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ABSTRACT

Lipinski, Walter Charles; Optimal Digital Computer Control of
Nuclear Reactore; Ph.D., Electrical Engineering Department; Illinois
Institute of Technology; January, 1969. Adviser: Professor
Andre G. Vacroux.

Prefaced by a literature survey of earlier applications of modern
control theory and presentation of pertinent kinetics equations, the
dissertation describes the sequential analytical investigation of a
digital computer control system to implement nuclear reactor control and
estimation functions.

First, nonlinear plant and measurement equations are derived for a
deterministic one-group prompt-jump point model, using rate of reactiv-
ity change as control input. Next, state—s?ace concepts are introduced,
resultant equations are expressed in vector-matrix notation, linearized
by a first-order Taylor series expansion, and solved for a discrete-
time input.

Dynamic programming yields an optimal stationary feedback control
law which minimizes a quadratic performance index for a discrete-time
system. An index consisting of the sum squares of the neutron density
derivations is defined and augmented to include terms in reactivity and
control input. With the aid of an iterative digital computer program
the stationary feedback matrix is calculated for selected values of
weighting coefficients. Corresponding transient behavioral plots of the

nonlinear system show that for the performance index as defined, the

xi



neutron density deviation is decreased to zero in one sample interval
after a step disturbance in reactivity.

In order to satisfy the optimal control law requirement that all
State variables be available, a nonlinear estimator is used to generate
estimates of nonmeasurable system state variables. Estimator equations,
based on a set of finite-difference equations, are derived by minimizing
a performance index consisting of the sum squares of errors in the
pPrevious estimate and in the current measurement. The resulting non-
linear equations are solved iteratively on a digital computer. Since
the system is described by differential equations, integration is used
to obtain the numerical values required by the estimator during the
iteration sequence.

Finally, the cascade combination of an optimal estimator and
optimal controller yields a control system whose performance is unequal
to a system without an estimator. Estimates generated for the nonlinear
system necessitate a large control input at the first sampling following
a reactivity disturbance. Inclusion of a computation time delay results
in further degraded performance. If an integrator is incorporated into
the nonlinear estimator, the integration step size must be reduced when
a control input is present. Since the computer programs used to solve
the estimator equations and to compute the control input are not
compiled for minimum time execution, no conclusion can be made with
regard to real-time control capability.

The dissertation includes a comprehensive literature survey of
earlier applications of modern control theory to nuclear reactors, a |
detailed review of pertinent reactor kinetics equations,

and a wealth of

selected nuclear and control engineering bibliographies_

xdd



CHAPTER 1

INTRODUCTION

1.1 Growth of nuclear power plants

Achievement of the first self-sustaining nuclear fission chain
reaction in 1942 was recognized by Enrico Fermi and his colleagues as
the initial objective toward creation of a destructive weapon. However,
each scientist also recognized the constructive potential of controlling
and converting the heat of fission into useful mechanical and electrical
energy. In fact, one of the earliest concepts of converting nuclear
energy into useful electrical energy — the Daniels Experimental Power
Pile at Oak Ridge National Laboratory — was based on studies initiated
in 1944 by Dr. Farrington Daniels, a member of this historic group.
Unfortunately, national security ptevailea and the application of
controlled nuclear power was directed toward military logistics.

In 1947, Congress authorized the development of a nuclear reactor
for submarine propulsion. Work initiated at Argonne National Laboratory
near Lemont, Illinois, led to the construction and operation, on
March 30, 1953, of the first nuclear propulsion system in a section of
a submarine hull at the National Reactor Testing Station in Idaho. This
land-based installation was the forerunner of the pressurized water
system used in the submarine Nautilus, which was launched the following
year. This launching represented the first milestone of the Naval

Reactors Program which has since revolutionized naval strategy.



New reactor concepts for municipal power systems also were pio-
neered by Argonne scientists and engineers through the design,
development, construction, and operation of simplified experiments or
small-scale prototype systems at the Argonne test site in Idaho. Such
was the case in 1951, when Experimental Breeder Reactor-I became the
first nuclear reactor to generate electricity (170 kilowatts), thereby
demonstrating the technical feasibility of: using unmoderated reactors
for generation of useful power, employing sodium and sodium-potassium
alloy as coolants, and breeding plutonium fuel. This experiment led
the way to subsequent construction and operation, in 1963, of: EBR-II,
a prototype fast power breeder central station plant; and the Enrico
Fermi Atomic Power Plant, the world's first large fast breeder nuclear
power plant.

In 1953, a series of Boiling Reactor Experiments (BORAX-I, -II,
-III) were started at the Idaho test site. These experiments ultimately
demonstrated the inherent power stability of the boiling water reactor
concept. On July 17, 1955, the town of Arco, Idaho, was temporarily
serviced with electricity generated by the BORAX-III power plant.

The technology gained from the BORAX experiments was applied in the
construction of the Experimental Boiling Water Reactor (EBWR) at
Argonne. On December 29, 1956, EBWR achieved its rated electrical
output of 5,000 kilowatts, and thus became the first of a series of
prototype central station power reactors to go into operation in the
USAEC Civilian Power Reactor Development Program.

Two years later (May, 1958), the Shippingport Atomic Power Station
in Pittsburgh, Pa., was dedicated as the first large-scale, nuclear

power-generating plant (60,000 electrical kilowatts) in the



United States. Built by Westinghouse Electric Corporation as part of
the same Civilian Power Reactor Development Program, the Shippingport
plant design is based on the pressurized, light-water reactor concept.

Since 1958, the growth of nuclear powered central station plants in
the United States has exceeded early predictions. This growth has been
achieved by making nuclear plants economically competitive with conven-
tional fossil-fueled plants. The most recent survey [11* 1ists 13
operable, 31 being built, and 40 planned. Of these plants, 81 are
based on the boiling and pressurized light-water reactor concepts.

As a consequence of the ever-increasing demand for uranium to fuel
the light-water-cooled reactor power plants, the U.S. Atomic Energy
Commission (USAEC) has given the highest priority to development of
liquid-metal-cooled fast breeder reactors. In August, 1968, a Liquid-
Metal Fast Breeder Reactor (LMFBR) program plan was issued. The overall
objective is to achieve, through research and development, the tech-
nology required to design, construct, and safely, reliably, and
economically operate fast breeder reactors for use in central station
nuclear power plants. Volume 4 of that plan specifies the instru-
mentation and control developments essential to reliable and safe
operation of an LMFBR plant [2].

1.2 Outline of dissertation

The research described in this dissertation was undertaken with the
objective of applying modern control theory to the analysis and design
of an optimal control system for a liquid metal fast breeder reactor.
The fundamental problems of finding the optimal regulator control law

and of estimating the states of the nonlinear deterministic system model

*
Numbers in brackets pertain to references cited on pages 164 to 173.



have been solved. A natural consequence of applying dynamic
programming to obtain the feedback regulator solution and iteration to
the estimation problem is the requirement that a digital computer be
used to implement the control and estimation functions.

Chapter 2 is devoted to a review of earlier applications of opti-
mal control theory to nuclear reactor control problems. Since it was
not feasible to discuss the specific applications in detail, appro-
priate references are cited. In addition, extensive selected bibliog-
raphies of nuclear and control engineering literature have been
compiled for those who wish to specialize in this area.

Chapter 3 contains the equations which describe the reactor system.
A one-group delayed neutron model is used as an approximation to the
six-group system. A further simplification of the system equations is
achieved by using a prompt-jump approximation.

In Chapter 4, the system differential equations are defined in
terms of state variables and matrices. Nonlinear system equations are
linearized using nominal values and the resulting set of equations is
solved with discrete-time inputs.

Chapter 5 treats the solution of the closed loop regulator problem
by applying dynamic programming to obtain the minimum of a specified
performance index and the resulting transient response is discussed.

The closed loop solutions of Chapter 5 idealistically assume that
all state variables are measurable; therefore, the solution of a deter-
ministic estimator is derived in Chapter 6. Chapter 7 considers the
combined problem of estimation and control.

Finally, the work is summarized, along with conclusions and

recommendations for future research, in Chapter 8.



CHAPTER 2
LITERATURE REVIEW

2.1 Introduction

From 1942 to 1960, analysis and design of control systems for
nuclear reactors was based on classical methods.

Modern reactor control theory, which is concerned with optimal
processes, emerged from Wiener's [6] theory in 1942, Bellman's [7]
dynamic programming techniques in 1954, and Pontryagin's [8] Maximum
Principle in 1956. Although several papers on off-line optimization of
nuclear fuel management and xenon shutdown programs were published,
Kallay [3], in 1960, was the first to relate modern control theory to
nuclear reactors.

Early application of digital computex’techniques to power reactors
was limited primarily to data handling and on-line computations. In
1962, an issue of Nucleonics [4] was devoted to a special report on on-
line computers for power reactors. At the 1964 Geneva Conference,
Schultz and Legler [5] presented a status report on the application of
digital computer techniques to reactor operation. Today, computer con-—
trol systems are installed on several nuclear reactors, but these
installations are on critical facilities or limited only to process con-
trol on power reactors. Literature describing these systems are listed

in the general nuclear bibliography.



2.2 Previous investigations

Kallay [3] suggested four applications of dynamic programming
techniques to nuclear reactors: optimization of poison distribution,
optimization of over-all plant efficiency with respect to component
cost, design of optimal control programs, and determination of flow
distribution through a heat exchanger. Under control applications,
Kallay outlined the optimal solution to a minimum energy start-up
problem.

Foureau [9] used Pontryagin's maximum principle, a single group of
delayed neutrons, and a constraint on the rate of change of reactivity,
to determine the switching boundaries for a reactor start—-up program.

Shen and Haag [10, 11, 12, 14] and Haag [13] used Pontryagin's
maximum principle to solve an optimum start-up problem using a one-group
delayed neutron model and a prompt-jump approximation. In the resulting
control scheme, the switching conditions on the input were determined by
nonlinear functions of time.

Mulcahey [15, 16] analyzed the time optimal control of nuclear
reactors with velocity-limited control devices. His model consisted of
a fast reactor with one group of delayed neutrons and a reactivity
feedback, which was a function of the power level. The prompt-jump
approximation was employed, and the resulting set of equations was
solved analytically. System behavior was studied with analog and digi-
tal computers. He concluded that a power-level-based switching con-
troller should be adopted.

Rosztoczy [17, 18] used the maximum principle and analyzed three
optimization problems: a shutdown program for minimum xenon buildup,

flux state changes in nuclear reactors, and minimum fuel loading. The




model consisted of a single group of delayed neutrons and a reactivity
feedback proportional to the power level. An integral performance index
equal to reactivity squared was minimized by solving the resulting two-
point boundary value problem on an analog computer. A suboptimal
minimum-time solution was investigated by decreasing the time to execute
a change in power level. Power level changes with minimum control
energy were investigated by assuming a performance index equal to the
integral of the reactivity rate squared. The solutions presented were
open loop, and the control input was generated as a function of the
adjoint variables.

Ruiz [19] used Pontryagin's maximum principle to minimize an
integral performance index consisting of the sum of power deviation
squared and square of the product of reactivity and power. One group of
delayed neutrons was assumed. A closed loop control law was derived
which required pre-programmed time variable coefficients.

Ash [20] used dynamic programming to derive a functional equation
which would cause a boiling reactor to be ;riven back to its equilibri-
um condition in minimum time by continuously moving control rods.

Hermsen [21] used Wiener's theory and a linearized model of the
reactor to design a closed loop control system based on minimization of
an integral squared error index. Also, Z transform theory was used to
design a control system which would be suitable for computer control.
Pontryagin's maximum principle was applied to a system consisting of six
groups of delayed neutrons and a model based on Newton's law of cooling.
A set of 2(m + 7) equations resulted, where m was the number of

temperature nodes. Dimensionality of the problem was reduced by going

to a one-group linearized model, and a closed-loop control law was



derived. The maximum principle also was used to solve the minimum-time
problem with and without a constraint on the reactivity rate. In view
of the difficulties encountered in obtaining solutionms, it was suggested
that dynamic programming be applied to the problem in future research.

Kliger [22, 42] used Holder's inequality to solve the minimum-time
control problem subject to a constraint consisting of the product of
reactivity and flux. One group of delayed neutrons was assumed. He
derived a closed loop switching function, and proposed that a state
estimator be used to generate the non-measurable state variables.

Mohler [22, 24, 25] used the maximum principle to analyze the mini-
mum-time control of neutron density subject to a magnitude constraint on
reactivity. A bang-bang control law was derived. In order to maintain
constant power level, an additional input was required, after the last
switching, to offset the effect of delayed neutrons. For the case of a
six-group delayed neutron model, a feedback reactivity proportional to
the sum of the rate of change of precursors was required to hold power
level constant. A dither control was proposed as an alternate solution.

Weaver et al. [26] investigated: suboptimal closed-loop control
employing the second method of Lyapunov, nonlinear stability of coupled
core reactors described by a set of differential-difference equations,
synthesis of optimal closed-loop control of nuclear reactor systems, and
limits of validity for some approximations in reactor dynamics.

Secker and Weaver [27, 28] investigated optimal closed-loop control
using a set of equations linearized around a nominal trajectory, and a
quadratic performance index. Application of Pontryagin's maximum
principle led to a matrix Riccati equation. The optimal filter for

state-variable estimation was derived using Kalman's method for



differential systems, and a matrix Riccati equation was solved for the
optimal gain. The resulting closed-loop control system required storage
of the preprogrammed control variable and nominal state trajectory.

Melsa [29, 30] extended the work reported previously by Weaver
et al. [26]. Suboptimal control with a singular control matrix was
investigated and applied to the control of a nuclear rocket.

Kliger [31] defined a control variable which was equal to the
product of neutron flux density and reactivity and made the neutron
kinetics equations linear. Reactivity was recovered as a true input
control quantity by dividing the control variable by the measured flux.
He applied the maximum principle to the problem using an integral
performance index, and obtained the optimal control function in terms
of the state and adjoint variables. Using back substitution, he then
solved for the control function in terms of the state variables. An
estimator was designed to generate the delayed neutron states from
neutron flux measurements.

Duncombe [32, 33, 34] used the same 1fnearizing approximation as
Kliger to investigate on-line optimization of nuclear reactor load
control in the presence of nonlinearities. To carry through this
simplification, the performance index included a term of reactivity
times flux squared. Based on this approximation, the results obtained
by Duncombe must be judged accordingly. The optimal closed loop solu-
tion was obtained by using the maximum principle and deriving a matrix
Riccati equation. The solution of the matrix Riccati equation varied
with the varying load demand. To apply the correct feedback at each
instant, it was necessary to calculate the parameters of the feedback

network in effectively zero time. An analog computer was used to solve
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the matrix Riccati equation in 0.1 real time and to simulate the reactor

plant. All of the state variables were obtained from the simulation.
In his conclusions, Duncombe pointed out that in an actual application,
the reactor plant simulation would be replaced by the reactor itself,
however, he did not state that a state estimator would be necessary to
generate non-measurable variables.

Monta and Lennox [35] investigated time-optimal digital computer
control for the NRU reactor by applying the method of Desoer and
Wing [36].

Kliger [37] extended his work [31] to analysis of an optimal con-
trol system for nuclear reactors with a generalized temperature
feedback. The problem was subdivided such that a specific controller
yielded the coolant flow and neutron density to minimize a performance
index, and a universal controller forced the reactor neutron density to
follow the desired neutron density. The maximum principle was applied,
and the resulting set of equations was solved to obtain the optimal
control law. The control law required all state variables, so an
estimator was designed to generate delayed neutron estimates from
neutron flux measurements.

Sokolova [38] analyzed the problem of determining an optimum con-
trol law for a nuclear power plant. A set of 29 differential equatioms,
bilinear in the state variables and in the state and two control
variables, was used to describe the plant, which consisted of a reactor,
a regenerator, a cooler, and a turbocompressor. A quadratic perfor-
mance index was used, and dynamic programming was applied. Two control
equations were derived: one linear in the state variables and the other

nonlinear. Lyapunov's method was applied to guarantee stability of the



control system. Implementation of the control scheme required that all
state variables be measurable.

Weaver et al. [39] investigated: optimal feedback control of
nuclear reactor systems, modeling with Lyapunov functions, and linear
system design using state variable feedback. The optimal control
investigation used the linearizing substitution of Kliger [31]. A
quadratic error index and prompt reactor model were used and a time-
varying gain was obtained for the optimal feedback control by means of
Bellman's equation. The analysis was repeated on reactor models using
prompt nonlinear, linear delayed, and nonlinear delayed neutrons, with
and without feedback. The developed methods were then used to analyze
the start-up of a nuclear rocket.

Higgins [40] and Higgins and Schultz [41] investigated the
stability of certain nonlinear time-varying systems of automatic con-
trol. They used the second method of Lyapunov, the Popov frequency
criterion, and the matrix inequality method. As an example, the
stability theory was applied to the simpli%ied nuclear rocket propulsion
system considered by Mohler (1962).

Monta [43, 44, 45] investigated the time-optimal control of nuclear
reactors. One group of delayed neutrons and a prompt jump approximation
were assumed. The maximum principle was used to derive the switching
trajectories in state space, with and without constraints. The discrete
version of the maximum principle was used to analyze a system with a
pulse-width-modulated-reactivity input. An experiment was performed
on the Toshiba Training and Research Reactor using a digital control

computer. Computing time delay, control rod motor time constant,

1
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one-group approximation, and reactivity estimates had to be taken into
account for practical reasons.

Humphries [46, 47] used a parameter adjustment model to investigate
adaptive control of a nuclear rocket engine. The proportional control
gain for the control poison was the parameter adaptively adjusted and
the maximum core surface temperature was the variable adaptively
controlled. The performance index consisted of the integral squared
response error, which was formed by comparing the system output with
that of the reference model. To evaluate the performance index, the
nuclear rocket engine equations were linearized, the prompt neutron
lifetime was set equal to zero, and the effects of delayed neutrons were
neglected. Parseval's theorem was used to evaluate the performance
index as a function of gain. It was shown that propellant savings of up
to 20,000 pounds per transition from idle to full power are possible
with adaptive control.

Saluja [48], and Saluja, Sage, and Uhrig [49] analyzed open and
closed-loop control of nuclear systems. Three performance indices were
considered: integral of reactivity squared, integral of reactivity
squared and neutron density deviation squared, and the previous index
with reactivity set equal to a proportional flux integral function of
neutron density error. The maximum principle was applied, and quasi-
linearization was used to solve the resulting two-point boundary value
problem. Convergence was obtained in no more than four iterations for
all problems. The suboptimal closed-loop control law yielded poorer
performance than the open-loop control law. It was suggested that an

adaptive-type control be considered to improve performance.
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Ellis [50], and Sage and Ellis [51] presented a sequential sub-
optimal adaptive control philosophy which encompassed both identifica-
tion and control. A general nonlinear differential system was modeled
by a linear time varying system of assumed form. The system was
assumed stationary over subintervals of time. This allowed a controller
to generate a sequential control law which minimized an integral of time
weighted quadratic form of error and control effort. The method was
used to generate an optimum closed-loop control for the start-up
dynamics of a nuclear reactor system.

Masters [52], and Sage and Masters [52] derived a sequential method
for on-line estimation of the state variables and parameters of
discrete, nonlinear, dynamic systems. The discrete version of the
maximum principle was employed to obtain the canonic equations of the
least-squares optimal estimator. Also, a discretized invariant
imbedding technique was applied to solve the resulting two-point bound-
ary value problem. A system of sequential equations was then obtained
by application of variational methods to th; optimal trajectory. The
estimation procedure provided the best least-squares estimate of the
state vector, given noisy measurements at discrete intervals of time.
The method was applied to a nuclear reactor, with a single group of
delayed neutrons, and the system state and one parameter were
estimated.

Ogawa, Kaji, and Ozawa [54] analyzed the time-optimal control of
nuclear reactors with two kinds of internal feedback: a prompt feedback
generated by variations of fuel temperature and coolant density, and a
delayed feedback governed by variations of moderator temperature.

System stability was examined by investigating the behavior of the
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linearized system near an equilibrium point. The maximum principle
was applied to the quasilinear system to obtain the optimum control law.

Rasetti and Vallauri [55] discussed the maximum principle and
dynamic programming. A nuclear propulsion plant for a commercial ship
with four steam generators and one pressurizer was analyzed for time-
optimal control using the maximum principle. The canonical equations
were compared to the results obtained by applying Bellman's equation.

Tataru, Bajenescu, and Ghetaru [56] considered the closed-loop
regulator problem of a nuclear reactor. The small signal transfer
function of a reactor was used. A scheme was derived to keep the loop
gain constant by using a perturbing signal and a computing device to
offset gain changes caused by power level changes.

Partain [57], and Partain and Bailey [58, 59] studied the
application of Z transforms to linearized kinetics equations. Digital
simulation was used to investigate system behavior.

Herring [60], Herring et al. [61], Weaver [62] and Weaver and
Vanasse [68] developed a method for designing control systems by using
state variable feedback. This method was applied to a two-temperature-
region reactor and to a coupled-core reactor. Linearized transfer
functions were used for the reactor systems. A method also was outlined
for generating non-measurable state variables by placing frequency
dependent elements in the feedback path.

Miyazaki [63] applied Wiener's theory [6] of least-squares
optimization with quadratic constraint to the design of reactor control
systems. The deterministic case was investigated by taking the
integral square error for the criterion function and the integral square

of reactivity rate for the control function. The stochastic case was
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studied by substituting the mean-square error and mean-square
reactivity rate, respectively. Transfer functions for various step
sizes and ramp inputs were derived.

Habegger [64], and Habegger, Bailey, and Kadavanich [65] applied
quasilinearization and Kalman filter techniques to estimate nuclear
parameters in the EBWR, PUR-I, and EBR-II reactors.

Melsa et al. [66] investigated: system identification using a
random search method, data reconstruction using non-resetting
integrators, and sub-optimal closed-loop control using invariant
imbedding.

Mohler [67] analyzed the fuel-optimal control of a nuclear propul-
sion system by means of the maximum principle, Lagrange multipliers and
computers. Practical problems were shown to be complicated by state
constraints and high dimensionality. A minimum-time, prompt-neutron
control process with reactivity rate and amplitude constraint was
analyzed.

Mohler and Price [69, 70, 102] 1nvestIgated application of linear
programming procedures to optimal control of nuclear rocket reactors
which had inequality magnitude constraints imposed on the control and
state. Nonlinear equations were transformed into a form suitable for
linear programming by using a first-order Taylor series expansion.

Marciniak [71, 101] studied the time-optimal digital control of
zero power nuclear reactors. Sampled-data control system theory,
including Z-transforms and discrete state variables, was used to design
a control system which would: increase power level while maintaining a
minimum period, and reach demand power level with little, or no,

overshoot. Of the various data-holds investigated, the zero-order hold
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was the most stable. A time optimal study was made of a one-group
delayed neutron reactor using the maximum principle, and the switching
€quation was derived. This switching equation and the zero-order hold
were used to derive a control program, which was applied to noise-free
reactor models simulated on a digital computer. A modified version

of the control program was used on the Argonne Thermal Source Reactor.



CHAPTER 3
REACTOR DYNAMICS

3.1 Introduction

The derivation of the nuclear reactor kinetics equations, starting
from neutron physics fundamentals, is well documented. These include
treatments of the subject by: Glasstone and Edlund [72, Weinberg and
Wigner [73], Meghreblian and Holmes [74], Isbin [75], or Ash [76], and a
handbook presentation by Radkowsky [77]. An excellent treatment on
general reactor dynamics is given by Gyftopolous [78], and the specific
subject of fast reactor kinetics is treated by McCarthy and Okrent [79].
A discussion of the general subject of reactor dynamics and control is
given by: Ash [76], Harrer [80], Keepin [81], Schultz [82], and Weaver
[83, 84]. v

3.2 Six-group delayed neutron model

The point-model kinetics equations for a nuclear reactor are:

dal) | BB = 8 ooy + E Ay (©) (3.1)
and
dci(t) Si
- g n(t) - Aici(t) 5 W5 e ] 3.2
where

n(t) = neutron density

S§k(t) = reactivity

™
n

total delayed neutron fraction
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L = neutron lifetime

Ai = decay constant of the <th neutron precursor
Ci(t) = concentration of delayed neutrons of group 1
8i = delayed neutron fraction of group i

Reactor power level is proportional to neutron demsity. At low
power levels, reactivity is not a function of the neutron density;
therefore Eqs. (3.1) and (3.2) are commonly referred to as the zero
power kinetics equations.

In Eq. (3.1) reactivity is a function of time, and for this condi-
tion, Eqs. (3.1) and (3.2) are linear with time varying coefficients.
At high power levels, reactivity is a function of the neutron density,
and the equations become nonlinear.

The values of Ai and Bi for U-235 fueled fast reactors [85, p. 18]

are listed in Table 3.1.

TABLE 3.1

DELAYED NEUTRON YIELD FROM FAST FISSION IN U-235

| . & :
0.0127 0.000247 0.038
0.0317 0.00138 0.213
0r115 0.00122 0.188
0,311 0.00265 0.407
1.40 0.000832 0.128
3.87 0.000169 0.026

The relative abundance is given by a = Bi/B' The total delayed

neutron fraction is obtained from g = ZBi, and for the



values of £, in Table 3.1, § = 0.0065. Typically, & = 10-7 sec for a

fast reactor.

If the following variables are defined

a = B/L (3.3)
a; = 31/1 (3.4)
p(t) = 6k(t)/B (3.5)

and substituted into Eqs. (3.1) and (3.2), then

n(e) = ap(e)n(t) = an(t) + ] Ac, (6) (3.6)
i

éi(:) = a;n(t) - A, (t) 1i=1,...,6 3.7)

where the dot notation designates the derivative with respect to time,
and p is reactivity in dollars. Typically, lo]<1.

At equilibrium, the time derivatives are equal to zero, which on
solving Eq. (3.7) gives

ci(O) = uin(O)/xi (3.8)

The delayed neutron concentration can be pormalized by defining

z,(8) = (A/a) c (t) (3.9)
Substitution of Eq. (3.9) into Egqs. (3.6) and (3.7) results in a set of

normalized equations

n(t) = ap(t)n(t) - an(t) +a J z, (t) (3.10)
i

z2,(t) = Ay [agn(e) - z,(0)] 1=1,...,6 (3.11)

where the equilibrium solution requires that 21«)) = ain(O) and

) zi(o) = n(0) because ) a; = 1.
- & i
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3.3 Transient response of six-group model

For a step input of reactivity, the kinetics equations can be

solved by application of the Laplace transform. Under the conditions of

a step input p(t) = p, a constant. This constant value of reactivity is

substituted into the equation before transformation. The initial condi-
tions of n(0) and zi(O) are the values of n(t) and zi(t) which exist
just prior to the step addition of reactivity.

With p set equal to a constant, taking the Laplace transform of

Eqs. (3.10) and (3.11) results in

sN(s) - n(0) = apN(s) - aN(s) + a z Zi(s) (3.12)

sZ;(s) - z,(0) = A la;N(s) - Z,(s)] 1 =1,.056 (3.13)

Equation (3.13) is solved for Zi(s) to give

a,\ z_(0)

X £ 4 i e
zi(s) £ e Ai N(s) + - Ai i Lssmnal (3.14)

Equation (3.14) is then substituted into Eq. (3.12) to obtain an equa-

tion for N(s). Thus

6 zi(O)
n(O) =y izl W
N(s) = G (3.15)
a
s +a(l -p) - uizl ;—i—f;

Remembering that Z a; = 1, the denominator of Eq. (3.15) can be
1
rearranged to yield:

6 2z (o)
i
n(0) + a 121 o Ai
N(s) = 6 e (3.16)
s-ap+al) o
i=1 s + Ai

Equation (3.16) is valid for any arbitrary initial conditions of n(0)

and zi(O). If the system is at equilibrium before the reactivity
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addition, then
zi(O) = ain(O) (3.17)

and substitution of Eq. (3.17) into Eq. (3.16) results in an expression

of N(s) as a function of the initial neutron density. Thus

6 a;
1+ aizl ;_;_X;
N(s) = T ui) (3.18)
8 —op+ao Z
i=1 a8+ Ai

In order to find the inverse Laplace transform of Eq. (3.18), the
roots of the denominator must be known. If the numerator and denomina-
tor of Eq. (2.18) are multiplied by the factors s + Ai’ a seventh-order
polynomial in s is obtained for the denominator, with coefficients con-
sisting of complicated combinations of products and sums of the
Ai [82, pp. 110-111]. This polynomial is then factored for the roots.

An alternate method is to apply iteration to the denominator of
Eq. (3.18) by means of the Newton-Raphsonyalgorithm [86, p. 78] as

follows:
F(sn)
=g

Sl T %n T FT(s) i

which converges quadratically to yield the solution of F(sn+1) = 0 with

a.s

g
F(s) =s - ap + a z _— (3.20)
i s+ Ai
agdy
F'(s) =1l+a ) ——> (3.21)
i (s + Ai)z

where F(s) is the denominator of Eq. (3.18) and F'(s) is the derivative

of F(s) with respect to s.
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Substitution of Eqs. (3.20) and (3.21) into Eq. (3.19) results in

#1%n
sn =-ap +a Z EREL
s = i 4 (3:22)
T S L n a,\
l+a z ———1-1———5
i (sn i Ai)
which can be rearranged as follows:
')
W« W
Pkl +3 )2
s = L . = (3.23)
okl al,
1.0,

Q=

T s o S
e (sn + Ai)Z

In order for Eq. (3.23) to converge, suitable initial values must be
chosen for the various roots. For positive p, one root is positive and
all others are negative and range between the Ai values [76, p. 32].
For p negative, all seven roots are negative. The most negative root
is approximately equal to a(p - 1),

Equation (3.18) can be expressed as a partial fraction expansion.

That is,

B,
i

s - s,
1 b 4

7
N(s) = )
i=

n(0) (3.24)

Since the poles of Eq. (3.18) are simple, the coefficients Bi of

Eq. (3.24) can be obtained from:

8y
L% z i
1 7.

F'(s)

n(0) (3.25)

where F'(s) is given by Eq. (3.21).
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The Roots of Prompt Jump Equation computer program which finds the

s; and calculates the corresponding B; is listed in Appendix G.

Table 3.2 lists the 55 and B1 for a step input of p = 0.1.

TABLE 3.2

ROOTS OF KINETICS EQUATIONS AND TRANSIENT
RESPONSE COEFFICIENTS FOR p= 0.1

i &
.01046741 1.2924847
-.01438199 -0.03533592
-.06525568 -0.08955314
-.19093692 -0.04046886
-1.2253240 -0.01346368
-3.7713468 -0.00255375
-58,500.482 -0.11110930

The solution for the neutron density as a function of time,
.

obtained by taking the inverse transform of Eq. (3.24), is

at) = § Bel (3.26)
i=1

The time constant corresponding to the most negative root in Table 3.2
is 17 usec. If Eq. (3.26) is evaluated at t = 0.001 sec, using the
values in Table 3.2, n(0) = 1.0, and the Reactor Response to Step

Delta K computer program listed in Appendix G, then n(0.001) = 1.111.
The flux has jumped 11.1% in 1 msec, and remains at this level until tne
terms in Eq. (3.26) with longer time constants began to exert their

influence.
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3.4 Prompt—jump approximation

In the analysis which follows, detailed reactor transient behavior
at times less than 1 msec will not be of interest.
Transient behavior in this case can be adequately described by
employing the prompt-jump approximation. Setting n(t) = 0 in

Eq. (3.10) results in

6
0 = ap(t)n(t) - an(t) +a ] 2z (t) (3527)
i=1
which is then solved for n(t):
6
I 2,0
- 2 3.28
e e (3.28)

The neutron density is eliminated from Eq. (3.11) by substituting Eq.

(3.28) for n(t) to obtain

6
Aiai 2 zi(t)
. i=1
zi(t) @Y - Aizi(t) (3.29)

Reactor response to a step input can be determined by means of
Eqs. (3.28) and (3.29). For the case of equilibrium conditions prior

to the step, p =0 and z zi(O-) = n(0-). Immediately after the step

nO+) = 1= = n0-) (3.30)

and n(t) has increased by the factor 1/(1 -p). If p = 0.1,

T=ip S 195 i €3:31)

which is the same as the transient response calculated previously for

t = 0.001 sec and n(0) = 1.0.



3.5 One-group delayed neutron model

A further reduction in system dimensionality can be achieved by
considering a single group of delayed neutrons. With this assumption,

Eqs. (3.10) and (3.11) become
n(t) = ap(t)n(t) - an(t) + az(t) (3.32)
z(t) = Aln(t) - z(t)] (3.33)

The single-group decay constant A must be suitably chosen if the one-
group approximation is to provide useable results. In previous
applications of the approximation, A has been selected on the basis of
best asymptotic behavior as t+=. This method of selection is not the
best for studying transient behavior at times of the order of one
second; therefore an alternate method based on a matching of the
transient response is proposed.

3.6 Transient response of one-group model

The transient response of the one-group model to a step input of
reactivity can be determined by taking the Laplace transform of Egs.
(3.32) and (3.33) or equivalently modifying the six-group result of Eq.

(3.16) to give

n(0) + 220
N(s) = —s—us (3.34)
Baeth b s+ A

which alternately can be written

(s + \)n(0) + az(0)
s2+ (A +a - ap)s - apA .38

N(s) =

Given the numerical values of A, a, and p, the roots of Eq. (3.35) may

be calculated directly. These roots may be approximated by using
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the quadratic formula and the product relationship of the roots to

obtain
SERESAR/(1h="0) i
s2 & -a(l -p) - A/( - p) 335

assuming that A<<q.
The partial fraction expansion and inverse transformation of Eq.

(3.35), using the roots given by Egs. (3.36) and (3.37), results in

Aelon [o - p)2 + Ap]eSzt
a(l - p)2 +2(1 + p)

mit) = n(0)

a(l - p)[e®1t - 52%)

a(l - p)2 + (1 + p)

z(0) (3.38)

3.7 Transient response of one-group prompt-jump model

The prompt-jump approximation can be applied to Eq. (3.32) by

setting n(t) = 0 and solving for n(t). Then

i z(t)
alt) = m (3.39)

This solution for n(t) is substituted into Eq. (3.33) to obtain an

equation in z(t) and p(t). Thus

- e () z()
z(t) = —{_Tt) (3.40)

The solution of Eq. (3.40) is

t
_ Ap(t)
z(t) z(0) exp JO i_:_STE5 dt (3.41)

and the flux density solution is obtained by substituting Eq. (3.41)

into Eq. (3.39) to obtain




L
z(0) Ap(t)
20 = T2 e [ 2205 .

If p = 0 for t<0, then z(0) = n(0), and Eq. (3.42) becomes

t
_ n(0) Ap(t)
n(t) 1= p(t) =P Jo W ) dt (3.43)

If reactivity is constant, then p(t) = p, and Eq. (3.43) becomes

n(t) = lLfO% exp [Apt/(1 - p)] (3.44)

The same result is obtained from Eq. (3.38) for t>0.001 sec because
the contribution from the second exponential term is then negligible.

3.8 Selection of one-group decay constant

In later analyses, reactor transient behavior will be examined in
response to input signals occurring at one second intervals. It is
therefore desirable to select a A which will provide the best approxi-
mate transient response at the end of one ;econd. For the case of
p=0.1, n(0) = 1.0, and t = 1 sec, Eq. (3.43) is set equal to Eq.
(3.26) using the values in Table 3.2. This results in A = 0.312. This
value of A will be used in subsequent calculations which utilize the
single-group model. Note that, within accuracy limits, this particular
value of A coincides with one of the intermediate values of A listed
in Table 3.1.

3.9 Reactivity input
Reactivity changes in an actual system are effected by a control

rod mechanism. Figure 3.1 shows a block diagram of a reactivity input

system.
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B CONTROLA RO
INPUT CONTROL ROD POSITION " REACTIVITY
> i
u(t) MOTOR r(t) p(t)

Fig. 3.1 Reactivity input system

The gain Kr has been included in Fig. 3.1 to account for the control rod

calibration in terms of units of reactivity for units of position.

The control rod motor transfer function is given by

K
Rs)ins m ”
ey B (1 sTm) 4

which can be expressed as a differential equation as follows:

£(e) + TE(t) = Ku(t) (3.46)
If it is assumed that the motor time constant is negligible, then Eq.
(3.46) reduces to

r(t) = Ku(t) (3.47)
Reactivity is related to control rod position by

p(t) = K r(t) (3.48)
which upon substitution into Eq. (3.47) yields

p(t) = KKu(t) (3.49)

If K K is set equal to one, then the units of u(t) are given directly

in dollars per second, and Eq. (3.49) becomes
p(t) = u(t) (3.50)

Equation (3.50) shall be used in subsequent analysis to express the

functional dependence of reactivity on an input.



CHAPTER 4
STATE SPACE REPRESENTATION OF REACTOR DYNAMICS

4.1 Introduction

The classical methods of control system analysis and design are
based on input-output relationships of systems generally represented by
one nth order differential equation. Modern control theory utilizes the
concepts of state space and state variables, and an nth order system is
represented by a set of n first-order differential equations.

The selection of a set of state variables to represent a system
described by one nth order differential equation is not unique. In the
case of reactor kinetics, formulation of system equations from physical
considerations has led to a natural selection of state variables, and
the system is initially described by n first*order differential
equations.

It is convenient to first apply the concept of state space to a
reactor with one group of delayed neutrons and then extend it to a
reactor with six groups. For the one-group reactor, the neutron density
n(t) and delayed neutron precursor density c(t) are the two variables
which uniquely describe the state of the reactor at any time t. The
state space for the reactor is two dimensional, a plane, and its
coordinates are n(t) and c(t). The two coordinates are specified by a
pair of ordered numbers, a vector. The state of the reactor at any time

t can be associated with a point in a plane. Given n(tj) and c(ty),
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which determine the reactor state at any time t(, and the reactivity
p(t) for t > tg, the future behavior of the reactor can be predicted by
solving the system differential equations, and the change in system
state is traced as a line in the state plane. If the system is simula-
ted on an analog computer, the neutron density and delayed neutron
concentration can be individually displayed on digital meters,
individually recorded as a function of time, and plotted on an X-Y
recorder. The readings from the two digital meters provide information
on the instantaneous state, and the X-Y recorder traces a line in the
state plane. The individual recordings provide a parametric display as
a function of time.

If two groups of delayed neutrons are used to describe the reactor,
then the state space is three dimensional and has the coordinates n, c,
and cp. Specifying the values of n, c;, and c, at any time t locates a
point in the three dimensional space which describes the state of the
reactor. If the reactivity p(t) is given, the future behavior of the
reactor is traced as a line in the three dimensional state space. The
values of n, ¢}, and cy at any instant are represented by an ordered set
of numbers, a vector. The term vector is applied to the unique
description of a point by an ordered set of numbers and is not intended
to imply a directed line segment from the origin. An analog computer
simulation will require three digital meters and three recorders. Since
three-dimensional X-Y-Z plotters are not available, projections on the
X-Y, X-Z, and Y-Z planes may be recorded to afford an indirect
visualization of system behavior in the state space. The readings from

the three digital meters provide information on the instantaneous state,




and the individual recordings provide a parametric display as a function
of time.

With six-groups of delayed neutrons, the state space is seven-
dimensional, and seven differential equations are used to describe the
system. An ordered set of seven numbers, a vector, describes the system
state at any instant of time. An analog computer simulation requires
seven digital meters and seven recorders. Twenty-one X-Y plotters would
be required to plot all paired combinations of variables if the display
method of the three dimensional case was to be extended. In this case,
the change in system state cannot be visualized in three dimensional
space, but the readings from the seven digital meters specify the
instantaneous state and the individual recordings provide the parametric
display as a function of time. The ordered set of meter readings gives
the numerical value of the system state vector at any instant.

The above discussion may be summarized as follows: n state vari-

ables x,, x7, 3,..., & are needed to describe completely the behavior

n
of a system described by a set of n first-grder differential equations.
The set of n state variables can be considered as n components of a
vector x, called the state vector. A state space is an n-dimensional
space in which ), x7,..., xn are the coordinates. The state of the
system at time ? can then be represented by a point in an 7-dimensional
state space. The locus of points in the state space is called a
trajectory.

Vector-matrix notation is convenient for the representation of
system differential equations in state-space analysis. The solution of

vector-matrix differential equations is discussed briefly in Appendix A.

Detailed treatments of state-space analysis and vector-matrix equations
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have been published by: Zadeh and Desoer [87], DeRusso, Roy, and
Close [88], Gupta [89], Ogata [90], Timothy and Bona [91], and Chen and

Haas [92].

4.2 Six-group representation

Using vector-matrix notation, Eqs. (3.1) and (3.2) can be written:

_ g T[]
éJ Shpe0 T 0P =0 B1/% i
o W s B2/ c2
3 DR~ 0 0 D 83/% c3
eyl ’=t0 0" "0 -xy 0 "0 By /L cy (4.1)
cs OO oS0 g Bs/L cs
e o 0 (o) (0] Be/2 ce
Lx'l ot A R Ul R S B A R

On defining the generalized state vector:

] [ed]
X co
X3 Cc3
x = |xy| = |cy (4.2)
X5 Cg
A6 e
X7 n

Eq. (4.1) can be rewritten in the form
x(t) = A(t)x(t) (4.3)

where



=% 0
0 -Ap
g 0
A(t) = | 0 O
0 0
0 0
A1 A2

As shown in Appendix A, the solution of Eq. (4.3) is given by

A3

Ay

x(t) = o(t,to)x(tg)

As

0 B1/%
0 B2/
0 B3/2
0 By/%
0 Bs/%
-6 Bg/ L

Ae [8k(t)-Bl/%

where ¢(t,tg) is the state transition matrix.

(4.4)

(4.5)

Similarly, Eqs. (3.10) and (3.11) can be written as Eq. (4.3) with

}1(tf
zy(t)
z3(t)

x(t) = |z4(t)

z5(t)

zg(t)

LON

and

S
0 -Ap

0o 0

A(t) = |0 O
0 0

9.0

a a

0 Ai1a; T
0 Aqap

0 A3aj

0 Ayay

0 Asasg
-Ae Agag

a afp(t)-1]

(4.6)

(4.7)
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4.3 Six-group prompt-jump representation

The matrix equation corresponding to Eq. (3.29) is

z(t) = A(t)z(t) (4.8)
with
[z, ()]
zp(t)
z3(t)
E(t‘) = (4-9)
zy (t)
z5(t)
[z6 () ]
and
i
t —— .
i O
Arlp(t)+a;-1] Aa; A1a1 A1a1 ST A1a)
A2ap  Azlp(t)+az-1] Aza; A2az Az2az Azaz
A3ajz A3aj )\3[p(t)+a3—1] A3aj A3az A3aj
Ayay Ayay Ayay  Aylp(t)+ay-1] Ayay Ayay
Asas Asasg Asas Asas As[p(t)+35-l] Asas
L Agagp Aeag Agag Agag Aeag Aglp(t)+ag-1]
(4.10)

4.4 One-group representation

The kinetics equations with one group of delayed neutrons,
Eqs. (3.32) and (3.33), can be written in matrix notation as Eq. (4.3)
with

@ - [29] %.11)



and
-A A
A(t) = (4.12)
a af[p(t) - 1]
If reactivity is constant with p(t)=p, then the system equation is
x(t) = Ax (4.13)
where
-A A
A = (4.14)
a alp - 1)

The solution of Eq. (4.13) can be obtained, as shown in Appendix A, by

taking the Laplace transform of Eq. (4.13) to obtain

sX(s) - x(0) = AX(s) (4.15)
which can be solved for X(s):

X(s) = [sI - A]™'x(0) (4.16)

where I is the unit matrix. Equation (4.16) can be written in terms of

the Laplace transform of the state transitibn matrix ¢(t) as

X(s) = ¢(s)x(0) (4.17)
where ¢(s), the resolvent matrix, is given by

o(s) = |[sI - A]"! (4.18)
Taking the inverse Laplace transform of Eq. (4.18) results in

o(t) = 27'[sI - A]™! (4.19)
where ¢(t) is the state transition matrix. Using Eq. (4.19), the

inverse transform of Eq. (4.17) can be written as

x(t) = @(t)x(0) (4.20)
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For the matrix defined by Eq. (4.14)

st+A =
-a  st+a(l-p)

and 2(s) is given by
st+a(1-p) A

sI-A =

(4.21)

s24+(Ato-ap)s=Aap
o(s) =
o stA

s2+(Ato-ap) s=Aap

(4.22)

s2+(\+a-ap)s-Aap

s2+(Ato-ap ) s=Aap

If the root approximations given in Eqs. (3.36) and (3.37) are

substituted into Eq. (4.22), then

s+a (1-p) x
(s-s1) (s-s3) (s-s1) (s-s2)
0(5) = (4.23)
o s+
(s-s1) (s-sp) (s-g1)(s-s3)
where
s1 = A/ -p) (4.24)
Eomst o (1 —tp) — A/(L —p) (4.25)
The state transition matrix is obtained by taking the inverse Laplace
transform of Eq. (4.23):
¢11(t)  ¢12(t)
o(t) = (4.26)
$21(t)  ¢22(t)
where
[o@ = p)2 + aple®1t 4 peS2t
¢11 () all - )2 + 30 ¥ p) (4.27)
= N p)(eslt = eszt) 3
$12(t) = S E YT F A+ 5) (4.28)



a(l - p)(e

sit syt

)

021(6) = T2 FAA 49 (4.29)

$22(t) =

Aeslt + [a(l - p)2 + Aple

s)t

a(l - p)2 421 + p) (4.30)

For t = 0, Eq. (4.26) becomes

>
%(0) =
0

which is one of the properties of the state transition matrix.

0
- ¥ (4.31)
1

The solution for n(t) given by Eq. (4.20), with &(t) given by

Eq. (4.26), is identical to the result obtained previously in

Eq. (3.38), except that Eq. (4.20) gives, in addition, the solution

for the second state variable z(t).

4.5 One-group prompt-jump representation

The system based on the prompt-jump approximation is described by

Eqs. (3.39) and (3.40). If the reactivity input is considered, the

system equations are augmented by includiﬂg Eq. (3.50) as follows:

g Ilgig (4.32)

p = u (4.33)

2= < f - (4.34)
These equations are expressed in matrix notation as:

x = £(x, v (4.35)

y = h(x) (4.36)

where
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z

x = - (4.37)
£

_f- i’ l(zs O) (4.38)
f2(u)

f1(z, p) = 725 (4.39)

f,(u) = u (4.40)

y = n (4.41)

and
h(x) = h(z, p) = 1fp (4.42)

Equation (4.35) is the system nonlinear vector-matrix differential

equation, and Eq. (4.36) is the scalar nonlinear measurement equation.
The system has a single input u and a single output y.

4.6 Linearization of the system and measurement equations

The system and measurement equations are linearized by considering
small perturbations about nominal values of the neutron density n%,
normalized precursor level z*, and control input u*. To find the
differential equations relating the deviations, expand Eq. (4.35) in a

Taylor series

af
S ek R P Rt 5
el
of
W (u - uk) + *=» (4.43)
u*
Define

62 = x-xt (4.44)
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du = u - u* (4.45)
note that

x* = £(x*, u*) (4.46)
then

§x = x - x* (4.47)

Finally, substitute Eqs. (4.44), (4.45), and (4.47) into Eq. (4.43),

retaining only first-order terms, to obtain

: af af
§x = — §x + — Su (4.48)
= ax x* du u*
where
3 ... My
9x) X
o , !
sz - : . (4.49)
afn  afg
3X1 axn
and
»
of )
i e
= " : (4.50)
afy
Ju

The measurement equation (4.36) is similarly expanded to obtain

y = h(x*) + %h (X = x*) + oo (4.51)
X x |, =" X
x
which can be written
dh
Sl .+
i d x | . = hettl
- Ly
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where

dy
and

dh
ax

By defining

A =

and

¥ - h(x*) (4.53)
1 e (4.54)
9x) X,

]

___§ (4.55)
ax

1 4.56)

= (4.
oh
sg (4.57)

Eqs. (4.48) and (4.52) can be written

ASx + Déu (4.58)

Héx

(4.59)

The matrices A, D, and H corresponding to Eqs. (4.32), (4.33) and

(4.34) are

Az*

* 2-]
iy )J (4.60)

(4.61)

*
mz] : (4.62)



For the particular case in which the reactor is at equilibrium, the
nominal values are: z* = 1.0, p* = 0, and u* = 0, and the system and

measurement equations become

A Uik 0
§x = &x + Su (4.63)
0 0 ¢ 4

sy = 1 1] &x (4.64)
where
z - 1.0 [}
§x = = (4.65)
P P
fu = u (‘0-66)
and
dy = n-1.0=6n (4.67)

4.7 Solution of the state-space equations with discrete-time inputs

For a discrete-time input, u is constant for T seconds which can be
L

expressed as

u(t) = kT<t<(k + 1)T (4.68)

Uk

After substituting Eq. (4.68) into Eq. (4.33) and integrating,

p(t) = p(tk) + uk(t - tk) (4.69)

which can be written

p(t) = ot u (e - tk) (4.70)

where Pk is the reactivity at the beginning of the interval. Equa-

tion (4.70) is substituted into Eq. (4.32) to obtain
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5 Azfpy +u (& - t.)]
L k" % k C(4.71)

1- ox ~ uk(t - tk)

which when integrated yields

Lr=ip
z(t) _ A k i > (4.72)
1n|i zk:l & u jLn[l SHh uk(t - tk)] A tk)

At t = tk+1,Eq. (4.72) is solved for 21 to obtain

=D
A k

= i — o (4.73)

24l 2 exPl:uk T, —uT }
0E e 5 0, then integration of Eq. (4.71) results in
Ap
e e ) (4.74)
Zx Pk

which for t = tk+l yields

Aka
Zyygl = % SXP T o (4.75)
Similarly, Prsl is obtained from Eq. (4.70) with t = Cel” Thus
Ppel, = Pt %t (4.76)

Equations (4.73) and (4.76) provide the finite difference solutions of
the system equations at the sampling instants kT. These solutions are
exact and do not involve any approximation of the derivative. If

w, = 0, Eq. (4.75) is used in place of Eq. (4.73). The corresponding

finite difference measurement equation is



o,
These finite difference equations may be expressed in matrix notation
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%.77)

1- P

(4.78)

as follows:

a1 T BOow)
and
Ve = hGg) (4.79)
where
z
x = Ea:] (4.80)
( - % \ (4.81)
g1 = 2z, exp ol = =A% .
k [ 1 P ukT
= 4.82
82 P t T ( )
and
zk »
= 4,
h(zk) e o (4.83)
4.8 Solution of the linearized equations with discrete-time input
If the delta notation of variable deviation is omitted, Eq. (4.58)
(4.84)

can be written

i = Ax + Du
When u = u for £ StSt s the Laplace transformation of
(4.85)

Eq. (4.84) yields
u

t55(8)--:_:k = AE(S)+D?

which is solved for X(s) as follows:
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X(s) = [sI - A]-l X C % [sI - A]-1 Duk

(4.86)

The solution for x(t) is obtained from the inverse transformation of

Eq. (4.86) as

=
x(t) = o(t - tk)zk +ou J o(t - T)Ddt

ty

or
t—tk
x(t) = o(t - tk)>_(k + u Jo & (t)Ddt
At t = tk+l
T
Xg1 = ¢(T)§k + U JO ®(t)Ddt

Equation (4.89) can be written
I T I ey

where the control distribution matrix

i
G = J ®(t)Ddt
0

As shown in Appendix A

i
J ¢(t)dt = A”l[e(T) - 1]
0
therefore
G = Alf[e - 1]D

when A-! exists.

(4.87)

(4.88)

(4.89)

(4.90)

(4.91)

(4.92)

(4.93)



On applying the above procedure to Eq. (4.58), and using the A and D

matrices of Eqs. (4.60) and (4.61)

B ATp* ATp*
exp(1 _pp*) -z*[; - exply o Q*:T

% = p*(1 - p*) (4.94)

0 1 ]
o7 _ =t _ [ Amp*]]
pX(1 - p*)  Ap*2| PIT =%
G = (4.95)
T
-
If the nominal values correspond to equilibrium conditioms,
z% = 1,0 and p* = 0, and Eqs. (4.94) and (4.95) reduce to
[T AT
¢ = (4.96)
10 X
A1Z
A (4.97)
T
vE »
Substituting Eqs. (4.96) and (4.97) into Eq. (4.90) results in the
discrete system equation
107 AT2/2 .
X = x. + (4.98
e S PR R ” Yk

and the discrete output measurement equation obtained using Eq. (4.62) is

Equations (4.98) and (4.99) will be used in deriving the optimal closed

loop control law for the regulator problem.
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CHAPTER 5

OPTIMAL CONTROL OF NUCLEAR SYSTEMS BY
STATE VARIABLE FEEDBACK
5.1 Introduction

Regulation of neutron density in a reactor requires a feedback
control law which will compensate for disturbances that occur infre-
quently and randomly anywhere in time from zero to infinity. If atten-
tion is focused on a single disturbance and system noise is neglected, a
deterministic regulator problem is formulated.

Dynamic programming is readily applied to linear discrete-time
systems, and in the case of a quadratic performance index, leads to the
direct calculation of the optimal linear feedback control law. If the
performance index is to be minimized over a finite time interval, the
feedback control law is a function of time; for an infinite time inter-
val, the feedback control law is stationary and all state variables are
fed back through fixed gains. Thus, discrete dynamic programming yields
the solution to the reactor regulator problem, if the continuous system
is sampled at discrete time intervals.

For a general discussion of dynamic programming, see Bellman [93],
Bellman and Kalaba [94], and Dreyfus [95]; and for the dynamic program-
ming solution of discrete-time systems with a quadratic performance in-
dex, see Tou [96, p. 45; 97, p. 345] and Lapidus and Luus [98, p. 155].

5.2 Dynamic programming solution of the linear regulator problem

For the discrete-time linear system described by



X = =+ Guk (5.1)
and a quadratic performance index of the form
N

= T 2
kgl (x,Qx, + cu?_)) (5.2)

where 5: is the transpose of Xy Q is an n*n positive-definite or semi-
definite symmetrical matrix, and c is a positive constant, the optimal

control law which minimizes IN’ as shown in Appendix B, is given by

wo = BN-klk (5.3)
where
v i
G[Q+P, .]¢
5 * - =1 (5.4)
G [Q + Pj_llc +c
and
P, = [¢+GB ]T[Q+P 1[¢ + GB,] +cBTB 5.5
] ] I=i j 33

In Eq. (5.3), the feedback matrix BN—k' a row matrix, is obtained from

the iterative solution of Egs. (5.4) and (5.5). The matrix P‘1 defined

by Eq. (5.5) is nxn and symmetrical. Starting with P_ = 0, Egs. (5.4)
and (5.5) yield By, Py, By, Py, ... . If the upper limit of summation

in Eq. (5.2) is allowed to approach infinity, then B, converges to a

3

stationary matrix B and Eq. (5.3) reduces to

uk = Bék (5.6)
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The product of the row matrix B and the state vector X yields the
optimal feedback u as indicated in Eq. (5.6).

5.3 Performance indices and constraints

Using Eq. (4.65), the general performance index given by Eq. (5.2)
can be written in expanded form as a function of the delayed neutron

deviation, reactivity, and reactivity rate:

N
Iy = kZl (Q1152i + 2Q126z, P + szoﬁ 15 Cui_l) (5.7

oz = — 1.0 (5.8)

Q1 Q2
Q = (5.9)
Q12 Q5

To regulate the neutron density, a performance index which is a

and

function of the neutron density deviation is defined by:

s S 5ni (5.10)

6nk =R 1.0 {5.11)
Equation (4.99) written in expanded form yields

6nk = 6zk + pk (5.12)



Lnionl

Substitution of Eq. (5.12) into Eq. (5.10) gives

N
= 2 2
T kzl (822 + 26z, + o}) (5.13)

Comparison of Eq. (5.13) with Eq. (5.7) results in
qQ = (5.14)

R = 0 (5.15)
The Q matrix defined by Eq. (5.14) satisfies the performance index of
Eq. (5.10). The optimal control law obtained using this matrix will
minimize the sum of the squares of the neutron density deviations at
sampling instants.

To reduce the magnitude of the reactivity rate which is
applied to correct a disturbance, a penalty term which weights Y1
can be added to Eq. (5.10). Similarly, reactivity can be returned to
zero more quickly after a disturbance by adding a penalty term which

-
weights P With these additional terms, Eq. (5.10) becomes
¥ 2
= 2 2 5.16
Iy kzl (6np + app + cup ) ( )

where a and ¢ are the weighting coefficients. If Eq. (5.12) is

substituted into Eq. (5.16), the corresponding matrix

Q = (5.17)

will result in the minimization of the sum of the squares of the

neutron density deviation and the reactivity at the sampling instants.
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5.4 Reactor transient response and the performance index

The optimal control law given by Eq. (5.6) is for a linear system
as described by Eq. (5.1). Thus, in order to apply the method to the
control of a nuclear reactor, the linearized discrete-time Egs. (4.98)
and (4.99) are used, and the ¢ and G matrices are substituted into
Eqs. (5.4) and (5.5) with A = 0.31 and T = 1. Arbitrary values are
assigned to the a and c weighting coefficients of Eq. (5.16), and the
Q matrix of Eq. (5.17) and the coefficient ¢ are substituted into
Eqs. (5.4) and (5.5). Equations (5.4) and (5.5) are solved iteratively
with N>« to obtain the stationary control law.. The Calculation
of Feedback Matrix computer program listed in Appendix G iteratively
evaluates the B matrix until the difference between successive iter-
ations diminishes to 10~7. Table 5.1 lists the B matrices calculated

for nine combinations of a and c.

TABLE 5.1

FEEDBACK MATRIX COEFFICIENTS

a e b, by

0 0 -0.8658008 -1.1341991
0 il -0.5403229 -0.7918012
0 10 -0.2411739 -0.4557331
ik 0 -0.6372618 -1.0987756
1 L -0.4680735 -0.8534584
1 10 ~0.2313746 -0.5005205
10 0 -0.2880492 -1.0446476
10 il -0.2658030 -0.9705480

10 10 -0.1829017 -0.6938182




The transient response of the reactor is calculated using the
nonlinear system Eq. (4.78), the nonlinear measurement Eq. (4.79), and
the linear feedback Eq. (5.6). The Calculation of Transient Response
computer program listed in Appendix G solves these equations and plots
are generated by the Plot Program for Transient Response computer
program. Equation (4.81) is unsatisfactory for numerical evaluation
with small values of u s therefore, a series expansion for Eq. (4.81),
derived in Appendix C, is used in the computer program.

Although 1 sec was selected for the control law sampling interval,
the system response is evaluated at intermediate sampling instants of
0.1 sec to demonstrate that there is no inter sample ripple.

Figure 5.1 shows the reactor transient response with an initial
disturbance of p(0+) = 0.1 and performance index weighting coefficients
a=0and c = 0. At t = (0-), the system is at equilibrium, which
corresponds to p(0-) = 0, 6z(0-) = 0, and 6n(0-) = 0. At t = (0+), a
step change of reactivity occurs which gives rise to the prompt jump
in neutron density. The control law minimizes the performance index
given in Eq. (5.10) by driving the neutron density deviation to
essentially zero in 1 sec. The control input at time zero is

determined from the product of py and b; from Table 5.1 or
ug = =-0.1134 $/sec (5.18)

The initial control effort is proportional to the reactivity distur-
bance and inversely proportional to the sampling interval. If the
sample interval is doubled, the neutron denmsity deviation is driven to
zero in 2 sec and the initial control effort is halved. Similarly, if

the sample interval is halved, the initial control effort is doubled.
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Transient response for a=0, c=0, po=-0.05, &§z4=-0,05.
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Figures 5.2 and 5.3 describe system behavior for the same
performance index as above, except the initial conditions are different.
For Fig. 5.2: ,(0-) = 0, 6z(0-) = 0.05, and §n(0-) = 0.05; for
Fig. 5.3: p(0-) = 0, 6z(0-) = -0.05 and 6n(0-) = -0.05. These initial
conditions correspond to a system which has not recovered from a prior
disturbance and consequently is not at equilibrium at t = (0-). The
disturbance for Fig. 5.2 is p(0+) = 0.05, and p(0+) = -0.05 for
Fig. 5.3. 1In both cases, the neutron density deviation is driven to
zero in 1 sec, and the reactivity and delayed neutron deviation
asymptotically approach zero.

Comparison of Figs. 5.1, 5.4, and 5.5 shows the effect of adding a
control penalty term to the performance index with ¢ = 0, ¢ = 1, and
c = 10, respectively. Here, the magnitude of the initial control
effort is reduced at the expense of the neutron density deviation not
being returned to zero in 1 sec. In Fig. 5.4, the neutron density
returns to 1%Z in 2.6 sec and for Fig. 5.5 in 7.1 sec.

The effect of adding a reactivity term to the performance index
can be seen by comparing Figs. 5.1, 5.6, and 5.9, and Figs. 5.2 and 5.10.
In Fig. 5.10, the area under the reactivity curve has been reduced at
the expense of the neutron density deviation remaining off-normal for a
longer period.

Figure 5.7 shows the system behavior with uniform weight assigned
to the neutron density deviation, reactivity, and control effort.
Figure 12 shows the effect of reducing the weight assigned to the
neutron density deviation. Comparison of Fig. 5.7 with Figs. 5.8 and
5.11 shows the effect of increased wéight on control effort and

reactivity, respectively.




Implementation of the optimal control law given by Eq. (5.6)
requires that the system state be known at each sampling instant. In
a nuclear reactor, the delayed neutron precursor density and reactivity
cannot be measured; consequently, they must be estimated from
measurements of the neutron density. An optimal estimator which

performs this function is derived in the following chapter.
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CHAPTER 6
ESTIMATION OF NUCLEAR SYSTEM STATE VARIABLES

6.1 Introduction

In 1806, Legendre [103] established estimation theory as a
mathematical technique with the first publication on least-squares
estimation.

In 1960, Kalman [104] solved the Wiener problem for discrete-time
systems using state-transition analysis and orthogonal projections, and
presented the principle of duality which showed the relationship
between stochastic estimation and deterministic control. In a paper
on the general theory of control systems [105], he introduced the
concepts of controllability and observability. At the joint automatic
control conference, Kalman and Bucy [106] extended the method to
continuous systems. In a fourth paper, Kalman [107] summarized the
contributions of the earlier papers and added a number of theorems and
examples.

Ho [108] demonstrated the correspondence between the well-known
method of least squares [109] and the optimal-filtering theory of
Kalman. He showed that most of the results in linear filtering and
prediction theory can be easily derived via a simple lemma on matrix
inversion.

Lee [110] in his chapter on optimal estimation discussed: the

Wiener filter, the continuous and discrete Wiener-Kalman filter,




least-squares estimation, maximum-likelihood estimation, and the
Bayesian approach to estimation.

Ohap and Stubberbud [111] developed a technique for estimating the
state of a nonlinear system which combines Kalman's procedure with
quasi-linearization. Their technique is not optimal in the strict sense
since the linearized dynamic equations are approximations to the non-
linear equations. One advantage of the method is that unlike perturba-
tion equations no a priori state of the system must be assumed.

Cox [112] surveyed the methods available for resolving discrete-
time estimation problems: Bayesian and weighted least-squares
estimation. Least-squares estimation was applied to nonlinear plant and
measurement-vector-difference equations. A cost function was formulated
which consisted of a linear combination of quadratic forms in errors of
an a priori estimate, present observation, and plant noise. The con-
straint due to the plant equation was included by using a Lagrange
multiplier, and minimization of the cost function resulted in a pair of
nonlinear equations. The latter were solved fteratively to obtain the
optimal estimate. Linearized Kalman filtering was indicated as being
equivalent to a single iteration.

An alternate method of solving a cost function also was described.
This method results in a two-point boundary value problem which is
solved by successive approximations. M-step smoothing was introduced as
a method to alleviate the difficulty of computer memory requirements
increasing linearly with the number of observations. It was pointed out
that for systems with no plant noise, the linearized Kalman filter is

asymptotically open loop because the filter gain approaches zero.
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Mowery [113] presented an optimal filter solution for a plant
described by a nonlinear-vector-differential equation and a nonlinear-
vector-measurement equation. The nonlinear plant equations were
linearized about a nominal solution and a set of difference equations
was obtained. The nonlinear measurement equation was similarly
linearized. A criterion function was formulated which consisted of a
linear combination of quadratic forms in errors of an g priori estimate
and present observation. Minimizing the criterion function with respect
to the new estimate resulted in a set of nonlinear normal equations.

The solution of the linearized plant equation was used to derive the
relationship between the a priori and a posteriori error weighting
matrices. An iteration scheme was proposed to reduce the disparity
between the nominal state vector and the true value.

Deutsch [114] in a chapter on differential equation techniques
for linear filtering and prediction included the Kalman- Bucy method,
discrete-time estimation, nonstationary estimation, and Bayes'-
estimation formulation.

Sridhar and Pearson [115] presented an approximate solution to the
problem of digital sequential, least-squares estimation of states and
parameters in nonlinear processes. Observations were assumed to be
linear, and a cost function was formulated which consisted of the sum of
a linear combination of quadratic forms in errors of the state vector
estimates and observations. A Lagrange multiplier vector was used to
add the plant constraint to the cost function. Minimization of the cost
function resulted in a nonlinear two-point boundary value problem which
was solved by invariant imbedding to obtain the filter equations. An

example was presented for the solution of a system represented by a




nonlinear differential equation. Integration was used to obtain the
solution of the nonlinear plant equation at discrete time intervals.
Similarly, the plant variational equation was integrated to obtain the
value of the derivative of the plant nonlinear difference equation with
respect to the state vector.

Peschon, et al., [116, p. 70; 117, p. 6-8] derived an extended
Kalman filter by linearizing the process and measurement nonlinear
finite difference equations around the last estimate.

Phillips [118] used least-squares theory to formulate a cost
function for a discrete-time nonlinear plant and nonlinear measurement
system. A Lagrange multiplier was used to include the plant equation
constraint. The two-point boundary value problem which results from
the minimization of the cost function was solved by invariant imbedding
to obtain the filter equations. The resulting filter equations extend
the earlier work of Sridhar and Pearson [115] Ly considering a nonlinear
measurement equation.

.

Sorenson [119] investigated optimal estimation and control policies
for discrete-time, stochastic, dynamic systems. Perturbation tech-
niques were applied, terms higher than first order were retained, and
the estimation and control policies were determined using the Bayesian
approach. In Reference 120 he summarized Kalman filtering techniques.
A system consisting of a nonlinear plant and nonlinear measurement equa-
tion was analyzed by using linear perturbation equations with the
coefficients evaluated at nominal values.

Sage and Masters [121] showed the relationship between least—
squares-curve fitting and optimum filtering for linear systems. The

Kalman-Bucy solution to the Wienmer filtering problem was presented using
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least-squares techniques and. the Bayesian rule. Relationshipé between
least-squares, minimum-variance, and minimum-mean-squared-error
estimates also were described.

Irwin [122] investigated estimation for discrete-time systems. The
Bayesian, maximum likelihood, conditional expectation, dynamic pro-
gramming, orthogonal projection, and two-point boundary value problem
approaches were used to derive the Kalman filter equations. The solu-
tions for nonlinear systems consisted of: the Kalman filter linearized
about the present estimate; iterative solution of the equations
resulting from the dynamic programming approach; and the two-point
boundary value problem approach. A new approach was presented for the
nonlinear estimator which utilized a performance index consisting of
the logarithm of the conditional probability of the present estimate
based on a set of measurements. Minimization of the performance index
resulted in a set of nonlinear algebraic equations whose solution yields
the optimal estimate.

Pearson [123] extended the the work of Sridhar and Pearson [115] to
include nonlinear measurements. His result was the same as that of
Phillips [118].

Liebeldt [124] included a chapter on linear discrete dynamic esti-
mation and derived the Kalman filter.

Sage [125] devoted chapters to optimum state estimation in linear
stationary systems, optimum filtering for nonstationary continuous
systems, and least-squares curve fitting and state estimation in
discrete linear systems.

0f the estimation methods outlined above, the iterative procedure

presented by Cox comes closest to providing the solution for the




deterministic nuclear system state estimator. The filter gain for a
deterministic system with the fastest observation scheme is different
from the filter gain derived for a stochastic system, so a sequential
development of a nuclear system state estimator is presented starting
with discrete-time equations and a linear Kalman estimator. Although
the estimator derivation is based on discrete-time difference equations,
integration is introduced into the estimator to make the method directly
applicable to a plant described by a nonlinear vector differential
equation and nonlinear measurement equation.

6.2 Kalman filter

For the discrete-time linear system described by

ENPRL Y (6.1)
and

R Hik (6.2)
the fastest observation scheme is uniquely determined by

Ry = B +HHHG -9 (6.3)

where jk is the estimate of the system state at instant k; f, is the

* =
first element of the dual basis of f;, ..., fn' where

ol —igr 6.4)

£ (eT) o (
and

9k - H’—“k (6.5)

If the dual basis of F is

F* x [2;’ oy f:] (6.6)
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P - ! (6.7)
or
- 6.8
F [£1! cesy ﬁn] ( )
For the discrete-time linear reactor Eqs. (4.98) and (4.99),
% A0 = 1
iy = (6.9)
AT 1 ; l1-AT
i [ | =< il
£ = = (6.10)
gy il o= 3T
. [t 1
F = {6.11)
1 -AT 1-2at
[(2AT - 1)/AT 1 - 1/AT
B = (6.12)
& 1/aT 1/AT
and
(25T - 1)/AT
Ly s (6.13)
1/AT

Thus the estimator described by Eq. (6.3) with the f, of Eq. (6.13)
will generate an optimal estimate of the system state, after a distur-
bance, using a maximum of two output measurements. In general, for an
nth-order system, the optimal estimate is obtained using a maximum of
»n output measurements.

As shown in Figs. 5.1 through 5.&2, the reactivity and delayed

. *
neutron deviation do not correspond to the nominal values of z = 1.0



and p* = 0 which were assumed in deriving Eqs. (4.98) and (4.99);
therefore, it would be better to use Eqs. (4.62) and (4.94) to evaluate
the H and ¢ matrices, except the nominal values must be known. The
extended Kalman filter method uses the last estimate as the nominal
value, which is satisfactory if successive values do not change rapidly.
As will be shown later, there is a very large change in nominal values
after a reactivity disturbance; thus the extended Kalman filter fails
to provide the correct estimates of the reactor state. The question of
unknown nominal values is resolved by using the iteration method
proposed by Cox [112].

6.3 Linear estimation by matrix inversion

For the dynamic system described by

Xeg1 = 0k +1, Kx (6.14)

and

.

assume k output measurements have been made which are related as

follows:
Fy.o= Hywy
¥2 = Hpxp

These measurements can be referred to x, by using Eq. (6.14) with

By O(j»k)ik, and written in composite form. Thus
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y1 Hy o(1,k)x,
y Hy 0(2,k)x,
.2 i ( ; )Xy (6.17)
Vin H ok, k)x,
Equation (6.17) can be partitioned to yield
1] [Ee,K]
y2 Hy%(2,k)
T e 6.18
- 3 X, ( )
_Yk_ _Hk4> (k ,k)_
and written more compactly as
% - B (6.19)

where P is the vector of output measurements, and Ek is the composite

matrix shown in Eq. (6.18).
The fastest observation scheme is obtained when the number of

output measurements is equal to the order of the system. With k = n,

Eq. (6.19) can be solved for X by left-multiplying by gi,
l;l;rx] ~ ﬂ;rﬂlxk (6.20)
and by [Eiﬂk]_l, to finally obtain
L ol d
5 = B&) By, (6.21)

which gives the optimal estimate of the state at instant k for a set of

k measurements.




A sequential form for estimation can be obtained by writing

Eq. (6.18) as follows:

Y1 1%
————] ® |e——— (6.22)
Y heX
where Ty is a vector of k-1 output measurements, and H is a

k-1
composite matrix defined by the first k-1 elements in Eq. (6.18). The

vector Ek 1 can be written in terms of ik' With simplified notation

Xep = 0l Gk-Dx = oplix (6.23)

and substitution of Eq. (6.23) into (6.22) yields

———| W |cem———— X, (6.24)

Solution of Eq. (6.24) for is obtained by multiplication by the
X

»
inverse matrix:

. s —_— (6.25)
and comparison with Eq. (6.21) shows that
=1
- T p - Too=116"T gT 1 gt (6.26)
-------- (0B 1B %y * BB I By 1B

uf AT _ =T
where (9 _,) 41+ Therefore
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s B
5=l le—i L o T Hiﬂk]-l[wkzlﬂlf—llk-l + Byl (6.27)

Equation (6.27) can be written in terms of X1 by substituting for

Y1 from Eq. (6.22) to obtain

= [o-T gt -1 4 gy -1 (e T ue + H .28
x = [0 B B el + BRIV (R GE %y Y HEY]  (6.28)

Equation (6.28) can be rearranged into a form containing an error
correction term by multiplying both sides of the equation with the

result that
o S sy T = [P it
(o B 1By 1%y + Hlx, = 0 (B B Xy Y EYy (6.29)

If the term H§Hk¢ is added and subtracted to the right hand side,

k-1%%-1

Eq. (6.29) can be written as follows:

~ T Bl 5 -}
(0 1By By 030y + HH 9 R ) el

i T
il S L R LR N
Hkyk (6.30)
Multiplication of both sides of Eq. (6.30) finally yields

3 5F oF : ; S
X = O Xy 0B G 0l Y REIT Iy, - By x ]

(6.31)
which is in the form of Kalman's Eq. (6.3), except that x, is generated

with the Vi output sample. This is the filtering equation.



1f &k-l and -&k are defined as the optimal filter outputs, then an

optimal estimate is predicted by using the transition matrix to yield

X = f-12e hn

where L is the predicted value of g-k obtained using the V-1
measurement. Equation (6.32) is the prediction equation.

If in Bq. (6.31), X1 and x, are replaced by gk_l and 2
respectively, and Eq. (6.32) is used, then Eq. (6.31) becomes

o= -T T -1 o =1 ub ut -
L n t [0 B B % Y REIT By - Bx) .
The system state at t = (k + 1)T is predicted from

B * iy (630

If both sides of Eq. (6.33) are multiplied by ¢ and Eq. (6.34) is

k
substituted for the left side

= - =T T -1 T - _ - ¥
a1 " Ot 0B R 0 Y REYT By - Bl (6.39)

which is Kalman's formula with

- * gt =1 Ty -1 ®F 6.36
£ =000 B 3B 1% * BEIT B e

Equation (6.33) yields the optimal estimate of the system at

instant k using an a priori estimate X, and an error correction term
based on measurement Yie* i_lk is the a posteriori estimate. A new
a priori estimate is generated using Eq. (6.34).

Equation (6.35) generates a new a priori estimate from the old

a priori estimate with an error correction term based on the current

measurement.
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6.4 Linear estimation by least-squares minimization

The least-squares estimate of x is obtained by minimizing the

following cost function:

I = (y; - Hix)? + (yp - Hpxp)2 + oon + (yy - Hx)? (6.37)
subject to
e T M1 e

Equation (6.37) can be written using Eq. (6.22) as follows:

3= e " Bk e - Boxog) + Oy - B’ R

The constraint defined by Eq. (6.38) can be included by defining a
vector Lagrangian multiplier A and augmenting Eq. (6.39). The new cost

function is

T
I= gy - Bogx 1y, - Boax gl + Oy - Bx)?

T
e O R (6.40)

Setting the gradient of J with respect to X1 %o and A, respectively

equal to zero yields

3y _ * % T 5
- S NS N S W (642
X-1
and
el S i i 129
3§k = 2[yk Hkgk] Hk + A =0 (6.42)
and

W T N gE ] =0 (6.43)



Equation (6.43) is the original system Eq. (6.38). Equation (6.42) is

solved for AT to obtain

W= 2y - B D
and AT is eliminated from Eq. (6.41) with the result that
T T i e A
LV S W W R ML T WL

which on multiplication by ¢;T1 yields

°;31§:-11k-1 2 0;31§:-l§k—15k—1 g szk “ ":Hkik

If x, _, is replaced by using Eq. (6.38), then Eq. (6.46) can be

written

-T T e 5 AR . L .
1 Be-1¥e-1 T BB O < B, - BREX

(6.44)

(6.45)

(6.46)

(6.47)

which, in turn, can be rearranged in the form of Eq. (6.27) by using

the matrix inverse.

An alternate cost function can be defined [112, 113, 122]:

I = H Gy - 1%+ 5y - Bx )2+ 2 - 0 x ]

where a is the previous estimate. Setting the gradients of J with

respect to X1 and X respectively equal to zero yields

aJ T T
AT 208, ~DIE, -2e,, =0

aJ y o z
Tty CRRIR YA -0

and elimination of A results in

(6.48)

(6.49)

(6.50)
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B i T " (6.51
(B, Gy = OVH, = by - Bx ] HRE o
Transposing Eq. (6.51) and multiplying by ¢k ; leads to
1 | T (6.52)
O~ 1% - %l ER e = Hy, - B

Equation (6.38) is used to eliminate X1 with the result that

5 T T
¢k l—a—u k 1%~ k l—u—u— Hkyk HkaEk (6.53)

Equation (6.53) can be rearranged in the form of Eq. (6.29) which is
obtained by the matrix inverse.

6.5 Nonlinear estimation by least-squares minimization and iteration

For the nonlinear plant defined by
x =£&_,) (6.54)

and the nonlinear measurement equation

v, = h(x) (6.55)

an optimal estimate of the system state can be obtained by minimizing

the following cost function:
- = 2 2 2 Tre =
SR E S T+ [y, - 2] + 27, - S ) (6.56)
where o is the previous estimate. Setting the gradients of J with
respect to X, and X respectively equal to zero yields

0J

1

=2[H (x_; - g)]Tﬂu - ATFk_l =0 (6.57)

and

g—;: = -2y, - h(x) 1+ = o (6.58)




where
Es-q)

L e (6.59)

k~1 azk_l
and

oh(x, )

B = a;:k (6.60)

Eliminating AT from Eqs. (6.57) and (6.58) results in
T  »

B, ) - D1HE = [y - hG)VEF (6.61)
and after transposing, Eq. (6.61) becomes

Eﬁu(’_tk_l -o) = F:_lﬂ;f[yk - h(x)] (6.62)

Equations (6.54) and (6.62) must be satisfied for J to be a minimum.
The estimation process may be interpreted as follows. Given the
last estimate o based on a measurement Yg-1° @ revised estimate X1 i

made which must satisfy

H@E ;-2 =0 (6.63)

This revised estimate is used in Eq. (6.54) to obtain an estimate of
X which, in turn, must satisfy
o - 6.64)
" h(Ek) 0 (
Nonlinear Eqs. (6.54) and (6.62) can be solved by iteration by
using a first-order Taylor expansion:

i+1 i+l i 6.65
o (A IR (G SN R b

h@k* : h(xg) +H (xltﬂ 1) (6.66)
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where the superscripts identify the iteration sequence. Equation (6.62)

at the i+l iteration is

(Efi 8- FiTc lH'k[yk = h("k o) ol

and substitution of Eqs. (6.65) and (6.66) into Eq. (6.67) results in

il

T T 1 e i
BEE 1 -9 = F By -he) + B - BEG )
i+1 1
» . 6.68
LR Mg VB T Rt (6.68)
T i
The term ghﬂ X1 is added and subtracted to Eq. (6.68) to obtain

T T T i+l T T T 1
[BE +F B 4l = BE + R BER 05,

GRS i ; 1
* g dy, - hGg) + Blx - £6q 1
" : |
o i H ool i Ek—l) (6.69)
Multiplication of Eq. (6.69) by the inverse matrix yields

Ly i § i i 118
1

ik =Xyt [EE +E EBEE I {Fi-lﬂi[yk = h(ﬁi)

+H G - £ )] +EH @-x ) (6.70)

and the i+l estimate for X is obtained from

1+ _ 1 41 ° 4
8 R tE e TR ) (6.71)

Equations (6.70) and (6.71) are the estimator equations for a system
consisting of a nonlinear plant with a nonlinear measurement. The

iteration sequence is started by selecting

2. =g (6.72)




and

x = f@ (6.73)

With each iteration, the H and F, _, matrices are re-evaluated
and a new matrix inverse is calculated. A matrix inversion lemma
applied to stochastic systems to eliminate the inversion is not appli-
cable to Eq. (6.70) [125, p. 276].

The term Eﬂ(g_- Ei_l) which appears on the right hand side of
Eq. (6.70) is identically equal to zero throughout the iteration

sequence. A proof that
BH(-x.)=0 (6.74)
-0 -1 —

is given in Appendix D.

6.6 Nonlinear estimation of continuous systems with discrete time

measurements

The nonlinear estimator defined by Eqs. (6.70) and (6.71) was
derived for a system described by nonlinear djfference Egs. (6.54) and
(6.55).

For a plant described by
x = g (6.75)

the value of X is obtained by integration:
) ¥
- = (6.76)
R L Y zb1+Ls@“t

ined b
The estimator requires Qg(xk_l)/agk_l which is obtained by
integrating the solution of the plant variational equation. The

variational equation is given by

& = oox (6.77)
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. (6.78)

Equation (6.77) is a linear equation and has the solution
§x, = 6.79
X = o(Déx, (6.79)

where the state-transition matrix ¢ satisfies the matrix differential

equation
3(t) = Go(t) (6.80)
with ¢(0) = I. As indicated by Eq. (6.79), the transition matrix of the

linearized system measures the change in X, per unit change in R

therefore
Af(x,_,) T
B, = —a—il— = F((k-1)T) = J GFdt (6.81)
-1 0
with F(0) = I. Thus simultaneous integration of Eqs. (6.75) and (6.81)

provides the information required by the estimator, and the analytic
solution of the nonlinear plant differential equation is not required.
An analytic comparison of Eq. (6.81) for the reactor equations is
presented in Appendix E.

6.7 Performance of nuclear system state estimator

For the nuclear system nonlinear discrete-time Egqs. (4.75), (4.76)

and (4.83), the performance index is defined:

& = 2 - 2

J = [yq - hGg 1% + [y, - hix)] (6.82)
subject to

Zo - zk_lexp[xpk_lT/(l - pk-l)] (6.83)



%" 1 ' (6.84)
The performance index is a minimum when

£ h(’—‘k—l) = zk_ll(l - °k-1) (6.85)

Y = h(x) =2/0 - g) (6.86)

Using Eqs. (6.83), (6.84), (6.85), and (6.86) and two successive output
samples, the solution for reactivity is

in(y, /3, 1)
b1 = e T T G, Ty, ) (6.87)

and for the delayed neutron precursor density

Z » (1~ (6.88)

k-1 Pr-1Yk-1

The solution for Ek is obtained from Eq. (6.83) using Eqs. (6.87) and
(6.88). Numerical values for the analytic solution of the estimator
equations are obtained by using the Analytic Estimator Solutions compu-
ter program listed in Appendix G. The programmed value of y, is unity,
and y) is calculated in response to a step chamge in reactivity
occurring at t = (0+). Table 6.1 lists the analytic estimator solutions
for different values of reactivity disturbances. These values are used
to determine whether the estimator with iteration, programmed to solve
Eqs. (6.70) and (6.71), generates the correct estimate in one sample
after a disturbance.

The Finite Difference System with Estimator and Control computer
program (listed in Appendix G), with the control loop opened by setting

u = 0, generates samples of the output measurement by solving the plant

finite difference Eqs. (6.83) and (6.84), the measurement Eq. (4.77),
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TABLE 6.1

ANALYTIC ESTIMATOR SOLUTIONS

p (0+) 61 2 fiy
0.25 0.55778428 0.65380766 1.4784811
0.20 0.49233880 0.68571204 1.3507277
0.10 0.31081242 0.79259985 1.1500494

=0.10 -0.66212729 1.4690358 0.88382870

-0.20 -3.0783149 3.2274608 0.79137116

=0.25 -11.471604 9.3774779 0.75190634

and the estimator Eqs. (6.70) and (6.71). Consecutive iterations of
the estimator equations are performed until the performance index is

equal to or less than a specified value, which can be expressed as

Jse (6.89)

Thus by changing €;, the accuracy and number of iterations can be
controlled.

The matrices Fk-l and Hk are obtained by differentiating
Eqs. (6.83), (6.84), and (6.86), respectively, to obtain

iL
) ey o)

1-pk ik (1-p _l) 1-p. -

B, = ne (6.90)
0 1

B = [/Q-p) 2,/Q-0p.)2 (6.91)



A worst-case analysis is used to investigate the performance of the
estimator. Since a disturbance can occur anywhere within one sample
interval, the worst case is when it occurs immediately after the
measurement. The estimator is initialized by assuming the system to be

in equilibrium up to t = 0. Thus

a=Ry=x(0-) = [é] (6.92)
B o=[11] (6.93)
and
1
x(04) = [°(0+):| (6.94)

For large reactivity disturbances, the first iteration produces an
estimate of Pr=-1 which exceeds unity. If this happens, a discontinuity
is crossed and the estimator is not able to converge. The computer pro-
gram contains an arbitrary hard limit on Pr-1 of 0.8. With this limict,
the estimator produces correct estimates for step changes in reactivity
up to +0.568. Similarly, a discontinuity exists at -0.27$. Thus the
useable range of the estimator for step disturbances is from -0.27§ to
+5.68.

Tables 6.2 and 6.3 show, respectively, estimator performance
for 6, %, , and A, in response to step reactivity disturbances of 40.1%
and -0.1$ with an iteration accuracy of €; = 107%. The number of
iterations is indicated in column I, and the estimated values are given
beneath the true values. For P = 0.1, the estimate is generated in four
iterations and agrees up to the fifth decimal place with the values in

Table 6.1. At the end of the second sample interval, the system state
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TABLE 6.2

ESTIMATOR PERFORMANCE WITH FINITE-DIFFERENCE SYSTEM EQUATIONS,
€ = 107", AND p(0+) = 0.1

Pr 2, e

0 +10000000 1.,00000005 Tyi1014 114
.00000000% 1.00000005% 1.00000005%

1 .10000000 1,03504454 1,15004947
.31082521* .79259022* 1,15005689*

2 .10000000 1.07131714 1.,19035235
.05907985*% 1.,07241802* 1,19035855*

3 .10000000 1,10886090 1,23206765
L.09999066* 1.,10867280% 1,23204808%

4 .10000000 1,14772035 1,27524482
. 05999905 1.14772158*% 1,27524482*

5 .10000000 1.18794163 1,31993512
.09999996* 1,18794169*% 1,31993512*

6 .10000000 1.22957243 1,36619157
.09999996* 1.22957249* 1.36619157*

7 .10000000 1.,27266217 1,41406904
L05999996% 1.27266222* 1,41406904*

8 ,10000000 1.,31726195 1,46362438
.09999999% 1.31726200% 1,46362439%

9 .10000000 1,36342472 1,51491633
,09999993* 1.36342481% 1,51491633*

10 .10000000 1,41120523 1,56800579
.05999998% 1.41120525* 1,56800579*

* .
Estimate



TABLE 6.3

ESTIMATOR PERFORMANCE WITH FINITE-DIFFERENCE SYSTEM EQUATIONS,
€; = 107, AND p(0+) = -0.1

k Pk Zx i
) -.10000000 1.00000005 +90909093
«00000000% 1.00000005*% 1,00000005*
1 -.10000000 97221162 .88382875
-.6€6060630% 1.46791877% +88394555*%
2 -.10000000 .94519543 +85926857
=.09012711% 93673362 85928843
3 -.10000000 +91892997 +83535089
-.10006901% .91900903* +83541036*
4 -.10000000 L,R9339439 81217672
-.,10009105* L.B9346834* 81217672%
5 -.10000000 R6856840 .78960765
-,05999991% .R6656834* .78960766%
6 -.,10000000 LR4443229 176766572
-.05999999% L.R4443226*% 76766571
7 -.10000000 LB2096686 +74633353
-, 09999995% .82096683% +74633353*
8 -.10000000 .79815353 .72559412
-,05999991% .79815348% +72559413*
9 -.10000000 .77597413 ,70543103
=.09999999* .77597411% +70543101%
10 -,10000000 .75441106 .68582824
-.09999995% .75441103*% 68582824*

*
Estimate
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TABLE 6.4

ESTIMATOR PERFORMANCE WITH FINITE-DIFFERENCE SYSTEM EQUATIONS,
€} = 1075, AND p(0+) = 0.25

M

k Py
G .25000001
.00000000%
1 .25000001
.55778435%
2 .25000001
.24997180%
3 .25000001
,24G99822%
4 .25000001
.25000005*
5 .25000001
.25000005*
6 .25000001
.25000003%
7 .25000001
.2500000%*
6 .25000001
.25000001%
9 .25000001
«250000 04
10 .25000001

.25000002"

* .
Estimate

1.00000005
1.00000005%

1.,10886100
65380763

1,22957266
122962016t

1,36342509
1.36342834*

1,51184€84
1.51184879*%

1.67643014
1,67643008%

1,R5892791
1.85892768*

2.06129260
2.06129257%

2.28566685%
2.28568683*

2.53450889
2.,53450883*%

2.81041793
2.81041790%

1,33333338
1,00000005%

1.,47848131
1,47848132%

1.63943018
1,63943187*

1.,81790011
1,81790009%*

2,01579849
2,01579849%

2,23524020
2,23524020*

2.47857056
2,47657056

2.74835009
2.,7463900%

3.04758244
3.,04758241*

3.37934517
3.37934520*

3.74722387
3.74722384*



TABLE 6.5

ESTIMATOR PERFORMANCE WITH FINITE-DIFFERENCE SYSTEM EQUATIONS,
€, = 1075, AND p(0+) = -0.25

Px 7, %

0 -,25000001 1,00000005 .80000001
.00000000% 1.00000005% 1.,00000005*

1 -,25000001 ,93988293 +75190635
=11.47042594* 9,37661416% «75190811*

2 -.25000001 .88337989 +70670392
-,24271586* JR7823433% +70670567*

3 -,25000001 83027365 , 66421894
-,24998595* .83027136* 166422455*%

< -.25000001 ,78036003 .62428803
-.25004289" .78038681* .62428803*

5 -.25000001 ,73344706 158675765
-,24999987* . 73344699% .58675765*

6 -,25000001 68935435 155148348
-.25000008% ,68935439% 155148349*%

7 -.25000001 164791237 .51832990
-.24999993% ,64791234% «51832991*

8 -.25000001 ,60896177 .48716940
-,24999997* .60896174*% ,48716940%

9 -.25000001 ,57235275 .457se219*
-.24999992% \57235272*% .45788220

10 -.25000001 ,53794457 .43035565
-.24999997* .53794455% .43035564%

<
Estimate
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TABLE 6.6

ESTIMATOR PERFORMANCE WITH INTEGRATED SYSTEM EQUATIONS,
€] = 107"%, e, = 1072, AND p(0+) = 0.1

k pk Zp nk At
0 +10000000 1,00000005 1,111011114
+00000000% 41,00000005% 1,0000000°%
1 +10000000 1,03504454 1,15004947
+31418966% +78872010* 1,15005509* 1,00000
2 +10000000 1.07131714 1,19035235>
+09946450% 1,07196009* 1,19035821*% 1,00000
3 +10000000 1,10R86090 1,23206765
+10038641* 1,10844578*% 1,232068U6* 1,00000
4 «10000000 1:14772035 1,27524482
+10034495  1,14728047*% 1,27524485* 1,00000
5 +10000000 1,18794163 1,31993512
+100345768%  1.18748521* 1,31993510% 1,00000
6 .10000000 1,22057243  1,36619157
+10034587%  1,22909793*% 1,36619160*% 1,00000
7 «1Un00000 1.27266217 1,41406904
+10034579%  1,27217317% 1,41406901* 1,00000
8 +10000000 1.31726195 1,46362458
+10034589%  1,31675571*% 1,46362441* 1,00000
9 .10000000 1,36342472 1,514916$3
+10034579%  1,36290086% 1,51491682* 1,00000
10 +10000000 1,41120523 1,56800579
+10034587* 1,41066292% 1,56800580* 1,00000

*
Estimate



TABLE 6.7

ESTIMATOR PERFORMANCE WITH INTEGRATED SYSTEM EQUATIONS,
€; = 1074, €5 = 1073, AND p(0+) = 0.1

k pk zk nk At
0 .10000000 1,00000005 1,11111114
+00000000* 1,00000005% 1,0000000%*
- | «10000000 1.,03504454 1,15004947
+31165936% .79163070% 1,15005660% +25000
2 «10000000 1,07131714  1,190352$5
«09925989* 1,07220364* 1,19035848* .50000
3 .10000000 1,10886090 1,23206765
«10016345*% 1,10865993* 1,23206809* ,50000
a «1000U000 1,14772035 1,27524482
+1001/159%  1,14750156% 1,27524486% ,50000
5 .10000000 1,18794163  1,31993512
«1001/248% 1,18771397% 1,31993513*  ,50000
6 +1000U000  1,22957243  1,36619157
«1001/259*% 1,22933%65% 1,36619160* ,50000
7 +10000000 1,27266217 1,41406904
+1001/251% 1,27241819*% 1,41406901*  ,50000
8 +1000U000 1.31726195 1,46362438
+1001/267% 1.31700924* 1,46362439*  ,50000
9 +10000000 1.36342472 1,51491633
+10017254% 1,36316331% 1,51491630%  ,50000
10 «10000000 1,411203523 1,56800579
+1001/259* 1.,41093461* 1,56806582*  ,50000

*
Estimate
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is estimated to within 0.1%, requiring three iterations. Thereafter, a
single iteration is used to track the system. The estimation sequence
after k = 2, corresponds to an extended Kalman filter in which the
pPrevious estimate is used to evaluate the F and H matrices.

Tables 6.4 and 6.5 show, respectively, the estimator performance
in response to reactivity disturbances of +0.25$ and -0.25$ with an
iteration accuracy of Ep = 10~6. The increase in iteration accuracy is
required to obtain a good estimate for §,. For g = 1072, B
-0.15607480; and for g0 it 62 = 0.08458834. For g, = 10~ 4, Pot=
-0.25450338 and one additional sample is required to obtain an accurate
estimate of the system state. As indicated in Table 6.5, seven itera-
tions are required for gl and gz, and one iteration is used thereafter.

The estimates in Tables 6.2 to 6.5 are for a system described by
finite-difference equations. The performance of an estimator which uses
integration of the system equations is investigated by using the
Differential System With Estimator and Control computer program (listed
in Appendix G) with the feedback control loop opened by setting u = 0.
The plant differential equations are given by Eqs. (4.32) and (4.33);
and the variational equation used to calculate F,

k-1
Eq. (4.60). The matrix differential equation to be integrated is

is given by

Fip Frz|  [e(/[1-0(0)]  2(0)/[1-0(0)12| [F1; Fio
. . = (6.95)
Fa1 Fa2 0 0 Fpy. Fao
and after multiplication yields
e AR () Az (t)
Y i Tt [1-0(6)]2 21+ (6.96)



. N Ap(t) Az (t)

232 1-0(t) Bya F [l—p(t)]zez (6.97)
and

Fy1 = Fp =0 (6.98)

Solution of Eq. (6.98) requires that F;) = constant and F,, = constant,
but the initial conditions require F(0) = I. Therefore, F,, = 0 and
Fz2 = 1. After substitution of F;; and Fp,, Eqs. (6.96) and (6.97)

reduce to

Booo= Ap(t)
F1 1-p(t) F11 (6.99)
P A (6.100)

p(t) Az (t)
Fiz = 1500 T2 Y i o72

The initial conditions are: F;;(0) = 1 and F;,(0) = 0.
Simultaneous integration of Eqs. (4.32), (4.33), (6.99), and (6.100)
yield the solutions for X and Fk-l'

The integration is performed numericallx, therefore the accuracy
of integration is dependent upon the step size. The Kutta-Merson
method [126; 127, p. 24] given in Appendix F is used because of its one-
step starting feature and error computation. The integration step size
At is automatically adjusted to meet a specified accuracy requirement.
The parameter €; in the computer program, specifies the integration
accuracy.

Tables 6.6 and 6.7 show, respectively, the estimator performance
for a step change in reactivity of 0.1 with integration accuracies ¢; of
1072 and 1073 and an iteration accuracy €; of 10™%. Comparison of
Table 6.6 with Table 6.1 shows 1% accuracy of x; and 0.5% accuracy for

X,. For x; and subsequent estimates, a steady error of approximately
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0.34% is obtained for f. The integration step size At, automatically
selected by the integration subroutine, is shown to be 1 sec for each
sample interval with the number of iterations remaining the same as in
Table 6.2. Table 6.7 shows 0.3% accuracy for x; with st = 0.25, and
0.74% accuracy for x> with At = 0.5. For X3 and subsequent estimates,
the steady error is 0.17% and At = 0.5. When At = 0.25, the equations
of the integration subroutine are solved four times for each iteration,

or 16 times for four iterations.



CHAPTER 7
COMBINED ESTIMATION AND CONTROL OF NUCLEAR SYSTEMS

7.1 Introduction

The problem of combined estimation and control has been
investigated elsewhere [96, 97, 110, 125 and 128] with a resulting
separation theorem. This theorem states that for linear systems subject
to Gaussian noise with a quadratic cost function, the optimum stochastic
controller is realized by cascading an optimal estimator with a deter-
ministic optimum controller. The separation theorem does not apply to
nonlinear systems with optimality guaranteed.

In Chapter 5, optimal control of a nuclear reactor was investigated
using a control law which is a linear function of the state variables.
The state variables: reactivity and delayedsneutron precursor density,
are not measureable. Therefore, in Chapter 6, an investigation was made
of an optimal estimator which generates estimates of reactivity and
delayed neutron precursor density from measurements of the prompt
neutron density. In this chapter, the transient performance of the
system is investigated with combined estimation and control.

7.2 Combined estimation and control

In Chapter 6, the estimator equations were derived with the
assumption that the plant was not under control. With the plant under

control, the linear prediction Eq. (6.32) is modified as follows:

G WS L
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and the linear filter Eq. (6.33) generates %, using Z% of Eq. (7.1) and

the Yy measurement. The control variable u is computed from

A

b = By

and the predicted estimate of g¥+1 is obtained by using Eq. (7.1).

With control, the nonlinear plant Eq. (6.54) becomes

B =10y wey)

and Eq. (6.59) is written:

s Yeuy)
k=1 aék-l

F

(7.2)

(7.3)

(7.4)

Equation (6.70) for the nonlinear filter remains unchanged, except that

Fk-l is computed using Eq. (7.4), and the new form for Eq. (6.71) is

gl o b i B

i

i
L tEm e n YR &, gy

At the end of the iteration sequence

s b
a =X

= N

and the control variable Uy is computed from

e,

With control, the nonlinear plant Eq. (6.75) is

i = g(x, v

and the value of X is obtained by integration:

1
4Gt fo E@, y_y)de

(735)

(7-6)

(=7

(7.8)

(7.9)

The variational Eq. (6.77) remains unchanged, except that G defined by



Eq. (6.78), is replaced by

28(x, ;)

9x

G (7.10)

7.3 Combined estimation and control with delay

The preceding calculation of the control variable assumed that a
measurement is made at t = kT, the estimator equations are solved
iteratively for a new estimate, the new control input is calculated, and
the control is applied at t = kT. A more realistic control analysis
should consider that a finite time is required to compute a new estimate
and control input. The fastest sampling rate is determined by the time
T required to execute the calculations éutlined above.

The estimation equations remain valid, except that the control
input must be delayed by one sample interval. Instead of using
Eq. (7.7) to calculate the control at U Eq. (7.3) with Y is used to

predict the system state at t = kT:

x = £y 15wy y) , (7.10)

Finally, the control input to be applied at t = kT is obtained using

Eq. (7.10), with the result that

uk = Bék (7.11)

If the calculations are completed in less than T seconds, u, is stored,
until t = kT, and then applied as an input after the measurement is
made.

The new sequence is:

1. Obtain a measurement Vi

2. Apply the previously calculated control input Uy -

99



100

3. Solve the estimator equations to obtain gk.
4. Use the estimator output gk and control input U to predict
the state of the plant at t = (k+1)T.

5. Use the predicted estimate to calculate a new control

input uk+1.

6. Store the control input Wl until the next measurement at

L1

t = (k+1)T.
7. Repeat the sequence.
If the total time to execute the above sequence is equal to the sampling
period T, then the storage time is zero.

7.4 Nuclear control system performance

The performance of the control system, consisting of an estimator
cascaded with the linear control law, is investigated with the plant
described first by a difference equation and second by a differential
equation.

The difference equation description of the plant is given by
Eq. (4.78), and the measurement is given by Eq. (4.83).

The matrix F, ty is obtained by differentiating Eq. (4.78) with the

k
result that

1=n
k-1
exp ( A = =AT)
R W, R
o
0
ATz 1-p
k- A =
L exp ( L— Lo - AT)

G-pk_l)(l-ok_l-uk_lT)
t7.12)

and if - 0, Eq. (6.90) is used. The matrix Hk is given by Eq. (6.91).



The nonlinear differential equation of the plant is given by
Eq. (4.35), and the differential equations for F are given by
Eqs. (6.99) and (6.100), and F; = 0 and Fy; = 1. 1In the finite-
difference description, Fk-l is an explicit function of uk—l' but in the
differential description, F is not a direct function of W1 The
influence of control on F arises through the simultaneous integration of
Eqs. (4.35), (6.99), and (6.100), as shown in Appendix E.

Figures 7.1 through 7.4 show the transient response for the system
described by the finite-difference equations. These equations are
solved by the Finite Difference System with Estimator and Control
computer program. In Fig. 7.1, the response is for a step disturbance
of p = 0.1$ with no delay required for estimation and calculation of
control effort. Since the disturbance occurs immediately after the
measurement, the control for up is zero. At the end of the first
sample, the estimator generates an optimal estimate fi,, which is the
same as the value given in Table 6.2, and the control u; = 0.173$/sec.
After the second sample, the estimator gener;tes the correct estimate of
the system state, the control input is computed, and the neutron density
deviation is driven to zero. For samples at t = 3 sec and greater, the
neutron density deviation is zero, and the delayed neutron deviation and
reactivity approach zero asymptotically.

The transient response plotted in Fig. 7.2 is obtained by
calculating the control input using Eqs. (7.10) and (7.11). The
estimate generated from the measurement made at t = 1 sec, is used with
u; = 0 to obtain a predicted estimate iz. This estimate is used to
calculate up. The estimate generated from the measurement made at

t = 2 sec gives the true state of the plant. The estimate X is used
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Fig. 7.1 Transient response of system described by
finite-difference equations for e; = 107 and po = 0.1,
without control delay.
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Fig. 7.2 Transient response of system described by
finite-difference equations for €} = 10-% and pg = 0.1,

with control delay.
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Fig. 7.3 Transient response of system described by
finite-difference equations for g; = 10-® and po = 0.1,

with delayed and bounded control.
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Fig. 7.4 Transient response of system described by
finite-difference equations for €, = 107° and pg = -0.1,
with delayed and bounded control.
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Fig. 7.5 Transient response of system described by differential
equations for e; = 107, e, = 1072, and py = 0.1,
without control delay.
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Fig. 7.6 Transient response of system described by differential
equations for €; = 10'“, €y = 10'3, and pg = 0.1,
without control delay.
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Fig. 7.7 Transient response of system described by differential
equations for g; = 10_“, €y = 10_2, and pg = 0.1,
with control delay.
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Fig. 7.8 Transient response of system described by differential
equations for €; = 10™%, €; = 103, and pg = 0.1,
with control delay.
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Fig. 7.9 Transient response of system described by differential
equations for e; = 1079, €, = 10~*, and po = 0.1,
with control delay.
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Fig. 7.10 Transient response of system described by differential
equations for €; = 10~*, ¢, = 1072, and pg = 0.1,
with delayed and bounded control.
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Fig. 7.11 Transient response of system described by differential
equations for g; = 107", €2 = 107°, and py = 0.1,
with delayed and bounded control.
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Fig. 7.12 Transient response of system described by differential
equations for €; = 107", ¢; = 10-3, and pg = -0.1,
with delayed and bounded control.
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with uy to obtain a predicted estimate 53. The control uj, calculated
using 23, drives the neutron density deviation to zero, and the delayed
neutron deviation and reactivity approach zero asymptotically.

The control input up applied at t = 2 in Fig. 7.2 does not
correspond to an optimal control because it is not generated from
estimates which correspond to the system state. The control is con-

strained [129, 130] by programming a hard limit of 0.15 $/sec on u

|uk| <L (7.13)

where
UL = 0.15 $/sec (7.14)

Figure 7.3 shows the transient response with u constrained. The
neutron density deviation at t = 3 is closer to normal, and uj drives
the deviation to zero.

Figure 7.4 shows the system response to a reactivity disturbance of
-0.1$ with Uy constrained.

Figures 7.5 through 7.12 show the transient response for the system
described by differential equations. These equations are solved by the
Differential System with Estimator and Control computer program using
specified values for the iteration accuracy €; and for the integration
accuracy €3.

The transient response to a step disturbance of p = 0.1$ with no
control delay is shown in Fig. 7.5 for € = 10~"* and €y = 1072,
Comparison with Fig. 7.1 shows that the control u; does not drive the
neutron density deviation to zero at t = 3 sec. This is due to an error
in %;. However, the control ujg drive; the neutron density deviation to

zero, and the reactivity and delayed neutron precursor density approach




zero asymptotically. In Fig. 7.6, where €7 = 103

» the estimate %, is
closer to the true state. This results in a up which drives the neutron
density to approximately zero. For the estimate &;, At = 0.125 sec for
the first iteration and At = 0.25 sec for the next three iterationms.
For the estimate %X, At = 0.25 sec for two iterations. Thereafter,
At = 1 sec.

The transient response with control delay is shown in Fig. 7.7 for
€] = 10~* and €; = 102, Here, the deviation in neutron density is 19%
at t = 2 sec and up = -0.276 $/sec. The integration increment is 1 sec
for all iterations, which results in large errors in the state
estimates. The oscillations in the neutron density and reactivity are
damped for this particular initial condition and set of parameters.
Figure 7.8 shows the response with g; = 107" and e; = 1073, The peak in
the neutron density deviation at t = 5 sec is reduced, and greater
damping is shown in the oscillatory behavior. In Fig. 7.9 for g; = 10~%
and €; = 10™%, the estimate X, results in us which drives the neutron
density deviation to zero. Except for a neu;ron density deviation of
1.26% at t = 5 sec, the response is similar to that plotted in Fig. 7.2.
Four iterations are required for %; with an integration increment of
At = 0.0625 sec. The three iterations for X, use integration increments
of 0.0625, 0.125, and 0.25 sec, consecutively. Estimate %3 is obtained
in one iteration with At = 0.0625; %, is obtained in two iterations with
At = 0.125 sec. The next two estimates, ®5 and R%¢, are obtained in one
iteration with At = 0.5 sec. Estimates for t = 7 sec and greater are
obtained in one iteration with At = 1 sec. Thus &) requires the
greatest number of calculations with 64 solutions of the integrator

equations.
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Figure 7.10 shows the transient response for €; = 10'“, €3 = 10_2,
with delay and a control bound of 0.15 $/sec. The integration increment
is 0.5 sec for the first iteration and is 1 sec thereafter. In compari-
son with Fig. 7.3, the neutron density deviation has an error of 1.7% at
t =5 sec.

In Fig. 7.11 where €; = 1073, the neutron density deviation at
t =5 sec is 0.4%. The first iteration requires a At = 0.125 sec, and

the next three iterations are with At = 0.25 sec to obtain %X;. For %,,

three iterations are required with At 0.25 sec, whereas, one iteration
is required with At = 1 sec for succeeding estimates. Figure 7.12 shows

the system response for a reactivity disturbance of -0.1$.
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CHAPTER 8

SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS

8.1 Summary

The six-group point-model kinetics equations for a nuclear reactor
were normalized, solved with a step change in reactivity, and compared
to the transient response obtained using a prompt-jump approximation.
This demonstrated that for the control system investigation, it is
satisfactory to use the prompt-jump approximation with a resulting
reduction in order of the system. A further approximation was intro-
duced by using a single group of delayed neutrons. The decay constant
for the one-group model was selected by making a comparison with the
transient response of the six-group model at 1 sec. The rate of change
of reactivity was chosen as a control input by neglecting the control
rod motor time constant.

State-space concepts were introduced and vector matrix notation was
used to express: the six-group point model kinetics equation, the
normalized six-group kinetics equation, the six-group prompt-jump model,
the one-group kinetics equation, and the one-group prompt-jump model.

A first-order Taylor series expansion was used to linearize the one-
group prompt-jump equation. The one-group prompt-jump equation and the
linearized equations were solved with a discrete-time input.

An optimal stationary feedback control law was used to minimize a

quadratic performance index for a discrete-time system. A
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performance index was defined which consisted of the sum of the squares
of the neutron density deviation. This index was augmented to include
terms in reactivity and control. For selected values of the weighting
coefficients, the stationary feedback matrix was calculated using an
iterative digital computer program. System transient behavior was
plotted to demonstrate the influence of the weighting coefficients. For
the performance index as defined, the neutron density deviation is
driven to zero in one sample interval after a step disturbance in
reactivity. The control law assumes that all state variables are avail-
able, but the specific variables reactivity and delayed neutron precur-
sor density cannot be measured.

Kalman's filter was derived for a linear deterministic system by a
matrix inversion lemma and by minimization of a least-squares cost
function. The resulting filter equations showed the relationship of the
optimal filter gain to the state transition and measurement matrices. A
nonlinear estimator was derived by minimizing a least-squares perfor-
mance index and iteration was used to solve the resulting nonlinear
equations. The filter derivations were based on the assumption that the
system was described by finite-difference equations. Therefore, the
plant and variational equations were integrated to obtain the necessary
numerical values required by the estimator.

An algebraic solution of the reactor equations was derived to
obtain the estimated system state after a step disturbance in reactivi-
ty. This solution was compared to the solution obtained by iteration to
measure the performance of the nonlinear estimator. A digital computer
program was used to solve the estimator equations and iterations were

performed automatically until the estimator performance index was



reduced to a specified value. The performance of the estimator for a
nuclear system described by finite-difference equations was investigated
with different iteration accuracies. Because of its one-step starting
feature and error estimation, the Kutta-Merson algorithm was used to
integrate the plant and variational equations. The error estimate was
used to automatically adjust the integration step size to meet a
specified accuracy requirement. The performance of the estimator using
integration was investigated as a function of iteration accuracy and
integration accuracy.

Control of a nuclear reactor was investigated by cascading the
optimal estimator with the optimal controller. After a reactivity
disturbance, the optimal estimator requires two samples to estimate the
true state of the plant. After the second sample, the optimal con-
troller drives the neutron density deviation to zero in one sample. If
it is assumed that one sample interval is required to perform the esti-
mation and control calculations, then the delayed neutron deviation is
driven to zero in one sample after the third'measurement is made. A
constraint on the control variable was introduced to reduce the
magnitude of the control input applied after the second estimate is
made. The performance of the cascaded control system with an estimator
using integration was investigated as a function of iteration accuracy
and integration accuracy. With a small integration step size, system
performance with integration is equal to that of the system described by
finite-difference equations. The penalty for increased accuracy is an

increase in computation time.
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8.2 Conclusions

The optimal control law derived for a discrete-time linear system
with a quadratic cost function demonstrated that a deviation in neutron
density could be reduced to zero in one sample interval. The stationary
feedback control law for the reactor was derived by linearizing the
reactor equations around the desired nominal values. The plotted
responses (Figs. 5.1 - 5.12) are idealistic because the optimal control
requires knowledge of the reactivity and delayed neutron precursor
density at each sampling instant. From a process standpoint, this is a
physical impossibility, because these variables are not measureable and
therefore must be estimated.

The nonlinear estimator using iteration works very well for a
system described by nonlinear plant and measurement difference equationms.
If integration is used to estimate the state of a system described by
a nonlinear differential equation, the integration step size must be
reduced to maintain estimation accuracy; as a consequence, the computa-
tion time is increased. For higher-order systems, the combination of
iteration and sequential integration can easily result in an estimation
time exceeding one second. Integration of a set of simultaneous equa-
tions can be more profitably assigned to an analog computer with a
factor of ten applied to the problem time scale. Thus, an integration
over one sample interval in problem time can be obtained in one-tenth of
a sample interval in real time. The number of equations to be inte-
grated will not change the integration time, since all equations are
integrated simultaneously. Thus, the nonlinear estimator becomes a

hybrid system, with a digital computér solving the estimator difference



equations and an analog computer solving the system differential
equations.

The cascade combination of an estimator and controller results in
a control system whose performance is no longer equal to that of a
system without an estimator. Whereas, the linearized reactor equations
result in a linear stationary control law which controls the nonlinear
system satisfactorily under the assumption that all state variables
are measureable, the performance of the cascaded system demonstrates
that the estimates generated for the nonlinear system result in a large
control input at the first sampling instant after a disturbance.
Inclusion of computation time delay results in further degraded perfor-
mance. A bound on the control variable can be used to limit the control
inputs until the estimator establishes the true state of the system. If
an integrator is included as part of the nonlinear estimator, the
integration step size must be reduced to even smaller values when a

control input is present.

» .
The computer programs used to solve the estimator equations and to

compute the control input are not compiled for minimum time execution;
therefore, no conclusions can be made as to real-time control
capability.

8.3 Recommendations for future research

A hybrid computer system should be used to establish feasibility of
real-time control. An analog computer should be used to simulate the
reactor system, and a digital computer should be used for the estimation
and control calculations. The reactor equations should be expanded to

include six groups of delayed neutrons. Use of the six-group model will
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encourage inclusion of an integrator in the estimator, because an
analytic description by finite-difference equations will be difficult.

Starting with the one-group model, the regulator problem should be
investigated with noise added to the plant and measurement equationms.
The stochastic system should be expanded to include the six-group model.

The deterministic and stochastic one-group and six-group models
should be used to investigate control of demand changes in reactor power
level from source range to power operation, with and without reactivity
feedback.

At very low power levels, a nuclear reaction is a multiplicative
Poisson process. Optimal estimation theory should be applied to the
design of a reactivity meter.

The methods of estimation and control applied to the kinetics equa-
tions should be expanded to include the primary system, the secondary
system, and the turbine-generator system, with automatic start-up,
operation, and shutdown.

Optimal control theory should be used to establish ultimate system
performance without regard to cost. Since total optimization of the
control of a nuclear plant includes the performance of the controller
and its cost, an investigation should be made to determine whether a
significant savings in equipment cost is possible by accepting slightly

less than optimal performance.




APPENDIX A
VECTOR-MATRIX DIFFERENTIAL EQUATIONS
The homogeneous differential equation for a linear time-invariant

system is given in vector-matrix form by

x(t) = Ax(t),  x(to) = xq "N

The solution to Eq. (A.1l) is

x(t) = o(t - to)x(tg) (A.2)

where the state transition matrix is defined by

o(t - tg) = exp[A(t - tg)] (A.3)

The matrix exp(At) is defined by the infinite series

exp(At) = I + At + A2t2/2! + A3t3/3! + :.. (A.4)
Substitution of Eq. (A.2) into Eq. (A.1l) yields

d(t - tg) = Ad(t - tg) (a.5)
Use of Eq. (A.4) in Eq. (A.5) verifies that Eq. (A.2) is a solution
of Eq. (A.1). Note that when t = tg,

() =1 (A.6)

and the boundary conditions of Eq. (A.2) are satisfied.
The state transition matrix ¢(t) can be calculated by using

Eq. (A.4)
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o(t) = I + At + A2t2/21 + A3t3/31 + *»* (A.7)
or by taking the Laplace transform of both sides of Eq. (A.1l) to obtain

sX(s) - x(0) = AX(s) (A.8)
Rearrangement of Eq. (A.8) leads to

X(s) = [sI - A]"!x(0) (A.9)
which alternately can be written as

X(s) = 2(s)x(0) (A.10)
where ¢(s), the resolvent of matrix A, is given by

¢(s) = [sI - A]™! (A.11)

The state transition matrix ¢(t) is obtained by taking the inverse

Laplace transform of both sides of Eq. (A.1l) which can be expressed:
o(t) =2-1[sI - A]"! (A.12)
The solution to the nonhomogeneous equation
x(t) = Ax(t) + Bu(t) (A.13)

is obtained by first taking the Laplace transform of both sides

to obtain

sX(s) - x(0) = AX(s) + BU(s) (A.14)
rearranging

X(s) = [sI - A]"1x(0) + [sI - A]"1BU(s) (A.15)

and then taking the inverse Laplace tramnsform of both sides with the

result that
¢ .
x(t) = o(£)x(0) + I o(t - T)Bu(t)dr (A.16)
0 .




where the convolution theorem is used to obtain the integral term.

If the initial time is given as t; instead of zero, then

t
x(t) = o(t - to)x(tg)+ I ®(t - t)Bu(r)dt (A.17)
to

For a discrete-time input u where

u(t) = e kT <t g (k+1)T (A.18)

Eq. (A.17) is written

;
x(t) = o(t - tk)gk + u I o(t = T)Bdt (A.19)
%
or
t-tk
x(6) = ot - t)x +u IO o(1)Bdt (A.20)

The integral term of Eq. (A.20) can be evaluated by integrating

Eq. (A.7) from zero to T:

T
f o(t)dt = IT + AT2/2 + A%T3/3! + <« (A.21)
0

Multiplication by A of both sides of Eq. (A.21) yields

T
A J ®(t)dt = AT + A2T2/2 + A3T3/31 + «-- (A.22)
0

The unit matrix can be added to both sides of Eq. (A.22) as follows:

T
I+AJ ®(t)dt = I + AT + A2T2/2 + A3T3/31 + «- (A.23)
0

but the right hand side of Eq. (A.23) is ¢(T). Therefore,
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T
I+A J ¢(t)dt = o(T) (A.24)
0

which can be rewritten

t—tk
J o(t)dr = A7M[o(t - t) - 1] (A.25)
0

if A”! exists. Substitution of Eq. (A.25) into Eq. (A.20) yields
s = -1 - sy
x(t) = o(t tk):_ck + A" [o(t tk) I]Buk (A.26)
and at t = (k+1)T
B MDD + Al[e(T) - I]Bu, (A.27)

The homogeneous matrix differential equation of a time-varying

linear system is

x(t) = A(E)x(t), x(to) = xo (A.28)
Any solution of Eq. (A.28) is given by

x(t) = o(t, to)x(to) (A.29)

This is verified by substituting Eq. (A.29) into Eq. (A.28) with the
result that
o(t, to) = A(t)%(t, to) (A.30)

and

x(6) = $10(e, to)x(to)]

A(t)®(t, to)x(to)

A(t)x(t) (A.31)




Also
®(tg, tg) =1 (A.32)

and the boundary conditions are satisfied. Integration of Eq. (A.28)

yields
t

x(t) = x(tp) + J A(t)x(1)dt (A.33)
to
which can be solved by repeated substitution of the right side into the

integral for x. The first substitution yields

L4 %
x(t) = x(tg) + J A(T) [x(tg) + J A(v)x(v)dvldt (A.34)
to to
Define the operator
t
Q() = J ( )dr (A.35)

to

which leads to the following series as a solution of Eq. (A.22):

x(t) = [I + Q(A) + Q(AQ(4)) + Q(AQ(AQ(A))) + «++]x(tg) (A.36)

Comparison of Eq. (A.36) with Eq. (A.29) shows that the state transition
matrix for a time-varying system is given by:
o(t, to) = I+ Q(A) + Q(AQ(A)) + Q(AQ(AQ(A))) + -+ (4.37)
If A is constant matrix, then
®(t, to) = I + A(t - tg) + A2(t - tg)2/2! + A3(t - tg)3/3t + +**
(A.38)
which is the same as Eq. (A.7) with the argument replaced by t - tp.

Assume that the solution of the nonhomogeneous differential equa-

tion
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é(t) = A(t)x(t) + B(t)u(t), x(tg) = xo (A.39)
is given by

(A.40)

x(t) = o(t, to)y(t)
Then

x(t)

o(t, to)y(t) + b, to)y(t) (A.41)
and Eq. (A.30) is substituted into Eq. (A.41) to eliminate ¢. Thus
x(t) = o(t, to)i(t) + A)o(e, to)y(t) (A.42)
Substitution of Eq. (A.39) into Eq. (A.38) results in
x(t) = A(t)o(t, to)y(t) + B(t)u(t) (A.43)
which on comparison with Eq. (A.42) results in

o(t, to)i(t) = B(t)u(t) (A.44)

and y(t) is obtained by integration. Thus

t
y(t) = y(tp) + f o= (1, tg)B(t)u(r)dr (A.45)
y 2 w

At t = tg, Egqs. (A.32) and (A.40) result in

X(to) = x(tp) (A.46)

Equation (A.40) is solved for y(t) and substituted with Eq.(A.46)

into Eq. (A.45) to yield

t
o~ (t, to)x(t) = x(to) +[ ¢~ (1, tg)B(t)u(t)dr (A.47)
to

The solution for x(t) is

t
x(t) = o(t, to)x(tg) + o(t, to),J o=1(t, tg)B(t)u(r)dr (A.48)
to




Using the properties of the state transition matrix
o=l (1, tg) = (tg, T)

and
o(t, tg)d(tg, 1) = &(t, 1)
Eq. (A.48) can be written

t
x(t) = o(t, to)x(ty) + I o(t,t)B(t)u(r)dr
to

For the discrete-time input defined by Eq. (A.18), Eq. (A.51)

becomes

[tk+1

}_(t‘d_l) = o(tkﬂ, tk)l(tk) + O(tk+1,1)B(r)d'r

th

which can be written

Y+l »
X - o (k+1, k)z:k + u Jt o(tk+1,1)B(r)d1
k

(A.49)

(A.50)

(A.51)

(A.52)

(A.53)
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APPENDIX B

OPTIMAL CONTROL LAW FOR A DISCRETE-TIME LINEAR SYSTEM
WITH A QUADRATIC PERFORMANCE INDEX

For a discrete-time linear system described by

= B.1
ey = O+ Ouy (8.1)
and a quadratic performance index of the form
N T 4
Iy = kzl (sz)_ck + cuk_l) (B.2)

the optimal control law can be found by the method of dynamic
programming.
There is a sequence: up, Uj, Up, =ee) Ug 4 which will make IN a

minimum. Let the minimum value of IN be denoted by

N
= mi T 2
fy(x(0)] = min kzl [x,Qx, + cup ;] (B.3)
u]
UN-1
For the last N-j stages of an N-stage process
: [
3 = mi 2
fy-y[£(D)] = min k_z [x,Qx, + cu? ;] (B.4)
) j =j+1
j+1
UN-1

The principle of optimality [132, p. 57] may be used to interpret
the selection of ug, u;, up, *°°, uN_i as a sequence of decision pro-

cesses. The principle of optimality states: "An optimal policy has the



property that whatever the initial state and the initial decision are,
the remaining decisions must constitute an optimal policy with regard to
the state resulting from the first decision."

Then, by the principle of optimality, Eq. (B.4) reduces to

fyy &) = = SRR KR SN ) (8.5)
Starting with j = 0,

fy(x0) = min [xX1Qx; + cuf + £ (1)) (B.6)

fy-y () = nin [x3Qx; + cuf + £y, (x5)] ®.7)

fl(énq) % -~ LayQey + cud; + folxy)] a8
Define

£0(xy) = 0 (8.9)

Since the functional f is quadratic in x, both fN—j and fN-(j+1)

can be expressed in quadratic forms. Let

g &) = xjPy_ g, —
and
(x,,,) = x.,.P x (8.11)
- (3+1) &4 =41 N-(§+1)55+1
where the P matrices are nxn and symmetrical.
On substitution of Eq. (B.1ll) into Eq. (B.5)
] (B.12)

= 2
fN-j(Ej) min x +1ng+1 + cuj + x —j+l N-(J+l)—j+1
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Define
Sn-(3+1) T O+ Py (a0 o
Then
= i 2 )
-3y = “‘ﬁ‘j‘ (%5415 5= (j41) %41+ ©95) )

but X4 is a function of uy- Then, after substitution of Eq. (B.1l),

Eq. (B.14) becomes

% T 2 B.15
fN_J. (ij) m&g [(<1>1(j + Guj) sN-(j+1)(“’3j - Guj) + cuj] ( )

The minimum of Eq. (B.15) may be found by taking the derivative with

respect to uj and equating the result to zero. Thus

20ox, + Guj]TS G + 2cu; = 0 (B.16)

N-(j+1)

which can be expanded to give

* G GTS Gu, + cuj =0

X5%5N- (3+1) N5+ s

Taking the transpose of Eq. (B.17) and solving for uj results in

X
G'S 1}
s Bl Gha e
u, = - -t x, (.18)
G

2
SN—(j+l)G ke

which may be expressed in linear form by

AL . .
7 =1~ (B.19)
where
T
R i 117 .-
N-j ok : (B.20)

SN-(j+l)G 5
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or

GT[Q + P 1¢

N-(§+1)
)]G + c

B. =

-3 (8.21)

¢'[q + Py-G11

The recurrence relationship for the P matrices is obtained by

substituting Eqs. (B.10), (B.13), and (B.19) into Eq. (B.15) to obtain

x T o
XPy Xy = X (0 4GBy ) QR (44)) (4 GBy_ )X,
ol
+ cﬁjBN—jBN—jlj (B.22)
Comparing both sides of Eq. (B.22) leads to
T > 4
Pyy = (@ +GBy ) (Q+ By (4)) (0 +GBy )+ By By~ (B.23)

Equations (B.21) and (B.23) give the desired recurrence relationship for
the B and P matrices. Starting with j = N-1, and P = 0, the sequence

is: By, P, By, Py, °°°, B

Py-10 By
When N+« in Eq. (B.2), the control process becomes an infinite
stage process, and the feedback control law given by Eq. (B.19) becomes

time invariant.
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APPENDIX C
SERIES EXPANSION OF DISCRETE-TIME REACTOR EQUATION

Integration of the reactor kinetics equations results in the
following discrete-time solution for the normalized delayed neutron

precursor density:

z =z ex A—%n ————j;:—fk—— - AT (c.1)
I L e 4 g ST

which is unsatisfactory for numerical computation as uk*O.

Equation (C.1l) may be expanded in a Taylor series by defining

1l- pk .

f(uk) = n i—:—;;—:—;;f (c.2)
Then

' s B

£ =T —oT (€3

H T C.4

a (“k) =W (C.4)

£ (\.lk) = (l " pk = u'kT)3 (C.S)
and

n _ (=l TR

) =T - g mn (C.6)

The Taylor series expansion for Eq. (C.2) is



Tﬂ
£(w) =0+7 uk + 2(1_p 32 A -ee *n(l-p E u: +oee (C.7)

Substitution of Eq. (C.7) into Eq. (C.1l) results in

AT AT2 AT® n-1
el " % exP|:l-pk * 207 "k s MY ¢ = % e e ”]

(C.8)

The first and last terms inside of the bracket may be combined with the
result that

ATp AT2 AT®
B4 ® kexl:ulpk+——[2(1_pk e (lp) u.k + +o+| (C.9)

X = ukT/(l - pk) (C.10)

Then Eq. (C.9) may be expressed as follows

z -Z exp |—— AT (o +£+£2+ “ee +in_1+...) (c.11)
k+1 1- P £ 2 3 *n

When =0, x = 0, and Eq. (C.11) reduces to Eq. (4.75).
u
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APPENDIX D
PROOF THAT ONE ERROR TERM OF OPTIMAL ESTIMATOR IS ZERO

it
For the nonlinear estimator with iteration, the estimate X, . is

given by

i+l 1 T T . . S SRR
Xy =Ky ¥ HHE +RERE TR, - B

+H Gy - £Ga_ )]+ EH (@ - x )} (0.1)

It can be demonstrated that

i
(o - ’—‘k—l) =0 (D.2)

H
L
throughout the iteration sequence by first rearranging Eq. (D.1l) and

multiplying both sides to obtain

T T T 14 T T i T T i
R P R R ix g = R xR ShGe)

+ B Gg - £Gg_))] + HHa (0.3)

Then, if the term Fi_lﬂzﬂka_lg is added and subtracted to the right
side
T T T BB S, T T T
(BB, + P B Fe115-1 = B * EE o + F GBIy
- h( i) + xi - ol : ) - e
&) thE -RfEm g R Re
 f
M SE Y -

L Bi is defined



= £ ) + R la - x ) (0.5)

substituted into Eq. (D.4)

T T T - oot T T T T
(BH, + B  BEF  ix ;= (BE, + B BRF e+ R Ry
- b)) +H Gy - 8D)] ©.6)
and both sides are multiplied
K27 = o+ W, + B EERE TR Ry - hGg) + B G - 8D)
(0.7)

If the term o is subtracted from both sides of Eq. (D.7) and the
resulting equation is multiplied by 3%

i+l i

ki i T -1.T T i
G ) - =HIEH +F_ BEF IR By - hGg)

* Hk(éi = E})] (D.8)

If the left side of Eq. (D.8) is equal to a zero column vector and the

error terms in the bracket on the right side are not zero, then
L

T T T O
B EBE, + R B R ] B8 =0 .

The equality of Eq. (D.9) can be demonstrated by using the matrix

inversion 1
L ¥,
e |— it (D.10)
BeFe-1]
or XO
=it ' pr gl - D.11)
ENRTL e :
Yk
where

LT T T (0.12)
HoBE * BB A
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Multiplying both sides of Eq. (D.1l) by the composite H matrix yields
______ B I I (e oy || [ D.13)
K1 T o LR ;

The left side is equal to the measurement vector, therefore Eq. (D.13)

can be written

LSRN, L
Yy D Y R LY ¥y
Tl S : 2ol (D.14)
1
y 14T | A b
L T S WL R L | i

Since y, and ¥y are independent, the partioned matrix of Eq. (D.14) is

an nxn unit matrix, and

HM H =1 (n-1 x n-1) (D:15)
-n -
STenEr: _ :
HMIE B =0 (n-1 x 1) (D.16)
T s
F_,BM'E =0 (1 x n-1) (D.17)
F wipt gl=1 (D.18)
k—lHk k—lHk 4

Equation (D.9) is verified by Eq. (D.16).
Since the iteration sequence is started with 5%_1 = a, the first
. . - 1 3
error correction term contributed py gu(_ Ek-l) is zero, and all
t values ar 5 S — ¥
subsequent values are zero erefore, the term Ea(g_ Ek—l) may be

omitted from the estimator.
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APPENDIX E
DIFFERENCE SOLUTIONS BY INTEGRATION

Although numerical integration is used in the digital computer
calculation of the reactor state estimates, the reactor equations can be
integrated analytically to demonstrate that Fk—l obtained by integration

is equal to F obtained by differentiation of the plant difference

=l

equation. The following equations are integrated simultaneously from

zero to t:
2(t) = Az(t)p()/[1 - p(e)] 2(0) = 7, (E.1)
p(t) = w p(0) = oy _; (E.2)
$11(6) = ()41, (O)/[1 = o ()] ¢11(0) = 1 (E.3)

$12(8) = Ap ()41, (£)/[1 - p(t)]

+ Az(t)/[1 - p()])2 $12(0) = 0 (E.4)

First, Eq. (E.2) is integrated to obtain

= (E.5)
BAEF® Mg 9t
which is substituted into Eq. (E.1l), yielding
l1-p
A k-1
z(t) = z,__exp ln( ~ - ) - At (E.6)
o2 [uk—l 11 %t

Next Eq. (E.5) is substituted into Eq. (E.3) and integrated
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L T L

1:=p
¢11(t) = exp A E,n( kel )-M: (E.7)
[}k 1

Finally, Egs. (E.5), (E.6), and (E.7) are substituted into Eq. (E.4)

and integrated, with the result

Atz 1-p
P . k=1 e . nn( k-1 ) 9 At}(}z.a)
Yk-1

=y ) (=py_y-wy ;) T

At t = T, Eqs. (E.7) and (E.8) agree with matrix Eq. (7.12), which is

obtained by differentiating the plant finite-difference equations.



APPENDIX F

KUTTA-MERSON INTEGRATION ALGORITHM

Merson [126] proposed an integration method which does not require
a special starting feature and which can be used with automatic interval

adjustment. The Kutta-Merson process uses the equations

1

y1 = yo + 3hf(x0, yo) (F.1)
1 3 1

y2 = yo + ghf(xo, yo) + ghf(xo + 3h, y1) (F.2)
1

y3 = yo + ghf(xg, yo) + %hf(XO + %h, y2) (F.3)
1 3 1 1

yy = yo + Shf(xg, yo) - Fhf(x + 3h, y2) + 2hf(xg + 3h, y3) (F.4)

¥s = Yo + ghf(xo, ¥0) + (ko + 3, y3) + ghE(xo + b, y)  (F.5)
»

Merson showed that the error in yy is -hsy(v)/120, and in ys is
-hsy(v)/720; and that a good estimate of the error in the computed ys is
0.2(yy - ys).

Automatic interval adjustment is accomplished by specifying the

integration accuracy €; and adjusting h. If
[0.2Cyy = y9)| > €2 (.6)
h is halved. If

64 0.2(yy - ys)| < €2 (F.7)

then h is doubled.
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The advantage of the Kutta-Merson method is that it facilitates
rapid interval selection for exploratory calculations requiring

Specified accuracy; however it does require additional computation time

in comparison to other methods.



APPENDIX G

DIGITAL COMPUTER PROGRAMS

Roots of prompt jump equation

Reactor response to step delta k

Calculation of feedback matrix

Calculation of transient response

Plot program for transient response

Analytic estimator solutions

Finite-difference system with estimator and control

Differential system with estimator and control
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LS LR SR 2V

10

11

12

16

13

14

1. RQOTS OF PROMPT JUMP EQUATION

DIMENSION.S(7)» B(7), A(7) 4 D(7),ST(7)

FORMAT (1H1)
FORMAT (F12.8)
FORMAT (9X, 1KB, 16X, 1HS)
FORMAT (E14.8, 4X, E14.8)
FORMAT (1H )
A(1) = 0,038
R =, 213
A(3) = 0,188
A(4) = 0,407
A(5) = 0,128
AlS] = 0,026
LIS =0, 0127
BEE) = 0.0317
MR = 0,115
u(4) = 0,311
V(5 = 1.40
(k) = 3.87
5C1) = 0.0
S(2) = =0.014
S5(3)= =0,065
5(4) = =0.19
5(5) = =1,25
S$(6) = =3,75
S(7) = =65000.0
ALPHA = 65000,0
X's 1.0

RHO = 0.1

ERR = 1.0E-7

Do 15 I = 1,7
ST([) = 040

SUM 1 = 0.0

SUM 2 = 0.0

Do 12 J = 1,6

SUM1 = SUM1 + A(J) *(S(I)/(S(I1)+D(J)))ww2
SUMZ2 = SUM2 + A(U)*L(J)/(S(]1)ep(J))*w2
CONTINUE

5(1) = (RHO = SUM1)/(SUM2 ¢ X/ALPHA)
DIFF = S(I) = ST(I)

ST =S (1)

WRITE TYPE 2, S(I)

LENCDIERY) 6 175 1/

DIFF = = DIFF

IF(DIFF = ERR) 13, 13, 11

SUM 3 = 0.0 e

DO 14 K = 1,6

SUM3 = SUM3 + A(K)/Z(S(I) « D(K))
CONTINUE



15

B(1) =(SUM3 + X/ALPHA)/Z(SUM2 + X/ALPHA)
walTE TYPE 5

CONTINUE

PRINT 1

PRINT 3

PRINT 4, (B(I1)s SCI), 121,7)

PUNCH 4, (B(I1)» St 1s1:7)

END
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2, REACTOK RESPONSE TO STEP DELTA X

DIMENSION S(7)» B(7)

FORMAT (1H1)

FORMAT (2F16.8)

FORMAT (6X, 4KTIME, 12X, 4HFLUX, 12X, 6HFLUX 1,/)

READ 2, (B(I), S(I)s» 1=1,7)

PRINT 1

PRINT 3

DELT = 0.0001

DaNti N Y 4,101

T = (N = 1) « DELT

EEUX-= 0.0

DRl =1y 7

P0=ERUX s FLUX + B(T) » EXPF(S(1)*T)
PRINT 2, T, FLUX

11 CONTINUE
END

w N



10
21
p I §

2n
12

18

14

100

99

101
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3. CALCULATION OF FEEDSACK MATRIX

DIMENSION PHIC7,7)sK(7)2Q(757),P(7,7),S(7,7),HTSPH]I(?7),

15(7):PSI(7.7)0PSIPSI(7}7)18T8(7l7)

FORMAT (F16.8)

FORMAT (4F16.8)

FORMAT (11)

READ 11, N

REAL 10, ALAMBD, T

REAU 10, A, C

FORMAT (1H1//40X51HCALCULATION OF FEEDBACK MATRIX WITH

1CONTROL PENALTY)

FOURMAT (1HO0,9X»6HLAMBDA»20X,1HT»23Xs1HA»23X,1HC»23X21KN)
PRINT 12

PRINT 13

FORMAT (1H ,4(4X,F16.8,4%X),11X,11)

PRINT 14, ALAMBD,T,A,C»N

FORMAT (1H0,24X,3HPHI, 32X, 1HH,33X,1KHQ)

PRINT 15

FORMAT (1H0,10X,2F16.8,10X,F16,8,10X,2F16,8)

FORMAT (1H0,14X,1HS»29X,1HB,28%,34PS1,28%,1HP)

FORMAT (1H0,1X,3(2F14.8,2X),2F14,8)

FORMAT (1M0,1X»2F14.8,32Xx,2F14,8,2%X,2F14,8)

PHIt1;3) = 1.

PHI(1,2) = T « ALAMBD
PHIt(2,1) 8 §.

FHIt2,2) & 1,

H(1) = 5 « T wx 2 « ALAMBD
H(2) =
Q(1,1)
Q(1,2)
0(2,1)
QL2s2) ® 1, + A

PRINT 16, PH1(1,1),FHI(1,2),H(1),2(1,1),0(1,2)
PRINT 16, PHI(2,1),FHI(2,2),KH(2),2(2,1),0(2,2)
PRINT 17

D0 100
DO 100
LTy d)
B1TEMP
B2TEMP
Do 101
DO 101
S(1.,J)
HTSKH =
DO 102
DO 102 J = 1,N

HTSH = HTSH + H(I) * S(I1,J) + W(J)
DEN = HTSH + C

00 105 K = 1,N

T " N N 40
»

ocn noconmu

e Pllsd)

—_O N~ NN —
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104
105

106

107

1p8

109

30
31
32
33
34
35
36

a7

211

HTSPH! (K) = Q.

Du 104 I =1,N

DO 104 U = 1,N

HTSPHI (K) = KTSPHI (K) + W(1) # Stl,J) « PHI(JsK)

B(K) = “HTSPHI(K)/DEN

D0 106 I = 1,N

DO 106 J = 1,N

PSIC(I,Jd) 5 PHICI,J) « H(I) » B(J)
DO 207 I = 1,N

DON107 J = 4,N

PSIPSICI,J) = 0,

DO 107 K = 1,N

DO 107 L ® 1,N

PSIPSI(1,J) = PSIPSI(I,J) « PSI(K,1) * S(K,L) # PSI(L,J)
DO 108 I = 1,N

DO 108 J = 1,N

BTB(I,J) = B(l) » B(J)

DG 109 I = 1,N

DO 109 J = 1,N

P(l,J) = PSIPSI(I,J) « C » BTB(I,J)

DIFFL = BITEMP =~ B(1)

IF (DIFF1) 30,31,31

DIFF1 = =DIFF1

IF(DIFF1 = 0.0000002) 33,33,32

B1TEMP = B(1)

GO TO 99

DIFF2 = B2TEMP = B(2)

IF (DIFF2) 34,35,35

DIFFZ "= =DTFF2

IF(DIFF2 = 0.0000001) 37,37,36

B2TEMP = B(2)

GO TO 99

PRINT 18, S(1,1),S(1,2),8(1),B(2),PS1(1,1),PS1(1:2)>»
6 I 0 NP 2 6 B

PRINT 19, S(2,1),S(c,2)sPS1(2,1),PS1(2,2),P(2,1)2P(2,2)
PUNCH 21, B(1)» B(2), A, C

GO TO 20

END
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11
12
13

15
16
12
13
19
4

20

2

22
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4, CALCULATION OF TRANSIENT RESPONSE

FORMAT (1H1,28X,18HTRANSIENT RESPINSE)

FORMAT (1H0,20X,2HB1,27X,2HB2)

FORMAT (1H ,14X,F14.8,15%,F14,R,59%,F4,0)

FORMAT (F14.8)

FORMAT (1HO0,3X»1HN»14X,1HU,17X,3HRH0,17X,1KHZ,16X»4HFLYX,
116X%X,2HP17)

FORMAT (1H ,14,4(3X»F1648))

FORMAT (15,4F14,8)

FORMAT (15,F14.8)

FURMAT (19%5)

FORMAT (4F16.8)

FORMAT (84X,F16,8)

RKEAD 18, ™

READ 13, T

READ 13, ALAMBD

REAU 13, KHOO

READ 13, 20

KeAD 13, RUNNC

READ 19, B1, B2, A,C

PRINT 10

PRINT 11

PRINT 12, B1s» B2, RLNNO

FRINT 14

N =0

Pl 80

FLUX = Z0/(1.0 = RHCGO)

U= 81 » (20 = 1.0) + B2 = RHON

RHO = RHOO

DELTAN = FLUX = 1.0

DELTAZ = 40 - 1,0

PRINT 15, N, L» RHO, DELTAZ, DELTAN

PUNCH 16, N, U» RHO, DELTAZ, DELTAN

LK = 20

R4A0K = RHOQ

DO 22 Kk = 1,10

X = UsK*T/(1,0-RHOK)

SER = (ALAMBD*KeT/(1,0-RHUK))*(RHIK*X#(1,0/2,0+X*(1.0/2.0
1+X*(1,0/4,0+X*(1.0/5.04X%(1.0/6.04x*(1,0/7.0ex*(1,0/8,0¢
2X%(1.0/9.0+X710,0)2)))))))

Z = ZK=EXPF (SER)

RHO = RHOK + L*K#*T

FLUA = Z/(1.0-RK0)

DELTAN = FLUX = 1.0

DELTAZ L =-1+0

N = Ne+i
PRINT 15, N, L» RHO, DELTAZ, DELTAN
PUNCH 15, N, L» RHO, DELTAZ, DELTAN

CONTINUE
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K = 7
2Tj: :IRTO(FLUX - 1,0)%%2 « A*RHO##2 ¢ CeUee2
U = Bi#(ZK=1.0)+B2*RHOK
PUNCH 17,N,U
PRINT 25, PI
IF (N=M) 21,2323
23 IF(SENSE SWITCH 1) 24,20
24 PAUSE 1
GO TO 20
END
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> LN

31

32
33
34
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5. PLCT PROGRAM FOR TRANSIENT RESPONSE

DIMENSION N(111),U(111),RHO(114),Z¢111),FLUX(111),A0111)
FORMAT (Fé6,0)

FORMAT (5F16.8)

FORMAT (15,4F14,8)

FURMAT (1HO, 5F16.8,4%X,F6.,0)
SN = 20.0

S = 0,2

SuU £ §

SRHO = S

S{ s 8

SFLUX = §

Keal 1, RUN NC

READ I, (NCI),UCI),RHOCI),ZC1),FLIX(I),I=1,111)
IKUNND = KUN NO

UIGITYL = 1RUNNO/z1n

LIGIT2 = RUN NO - DIGITL » 10,
D087 - J ¢ 1,3

PLOTF (2.0,2.051)

PLCTF (0.020.Ns¢)

PLOTF (0.0,0.02,3)

PLOTF (DIGIT1,0.0,4)
PLOTF (10.,0,0,0+3)
PLOTF(0.,0,0,0,2)
PLOTF(DIGIT2,0.0,4)
PLOTF (0.0s%11.0,3)
PLOTF (0.020.Ns2)

PLOTF (1.023.051) .
PLOTF (0.0+2.5,9)

PLOTF (0.0s%2.5,4)

PLOTF (0.022.0,3)

PLOTF (0.12,2.044)

PLCTF (0.022.0,9)

PLOTF (0.0-0.0,9)

PLOTF (5.020.0,4)

PLOTF (0.050.0,3)

PLOTF (0.0+,22,0,3)

PLETF (0.12,-2.0,4)
PLOTF (0.0,%2,0,3)

PLOTF (0.0,%2,5,3)

34 [ = 1,9

a 0,5 . |

X 3 PLOTF (T,=2,5,4)

IFt] = 5) 31,32,31

X = PLOTF (T,=2,44,4)

Go TO 33

X 3 PLOTF (T,=2,38,4)

X & PLOTF (T,=2,5,3)
CONTINUE

= 2 3 X X X X M X I X DI DK I M I I I D I D >
LI I I LI O L L L T O T T T T T T )
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35
36

38

14

13

18
16

17

20

el

22

23

PLOTF (5.,0s%2,5+4)
PLOTF (5.02%2,004)
PLOTF (4.88,-2.0,4)
PLOTF (5.0,2,0,3)
PLOTF (5.022.0,4)
PLOTF (4.88,2,0:4)
PLOTF (5.022.053)
PLOTF (5.0+2.5,4)
0 &8 1 » 1,9

85,0 0,5 % |
X = PLOTF (T,2:5,4)
IF¢l = B5) 35,36,35

X = PLOTF (T,2.44,4)
GO TO 37

X = PLOTF (T7,2.38,4)

X = PLOTF (T,2:5,3)
CONTINUE

X = PLOTF (0.0,2.5,4)
X = PLOTF (0.020.0,8)
Lo 14 1 = 1,111
ACI)=NCD)

A(1) = 0.3

X = PLOTF (SN,SU»1)
X = pLOTF (0+020.N05¢)
X = PLOTECACLY2UC1)a23)
LC 15 1=2,110
sPLOTFCACI),L(]D),4)

X
X
X
X
X
X
X
X
D
1

5 CONTINUE
X = PLOTF(0.0,0,0,3)
A = PLOTF(SN,SRRO,1)
X = PLOTF(0.0,0,0,2)
K = 0
[1 = 2 + 11#K
I2 =9 + 1

DONT7 015 s 115,12

X = PLOTFCACI)»RHOCL)»3)
CONTINUE

K= K+ 1

IR (K= 100 18049,19

REF = 0.0

X = PLOTF(0.0,0,0,3)

X = PLOTF(SN,SZ,1)

X = PLOTF (0.02REF,2)
A 8 PLOTFCA(CL)»2(1),3)
K =0

[ = At e K

JREI e A £

NoRzen sl 2

X = PLOTF (A(I).Z(I),3)
CONTINUE

Ks K+ 1

IF (K = 10) 21,23,29$

X = PLOTF (0.0sREF»9)
XsPLOTF(SN,SFLUX,1)



24

25

26

27

X = PLOTF(0.0,REF,2)
A = PLOTF (A1), FLUX(1),3)
K =10

31 5 2 s211eK

e =g+ [1

P8 29 1 = [1,12

X = PLOTFCACI)»FLUX(]),3)
CONTINUE

K=z K + 1

IF(Kk = 10) 24,26,26
XzPLOTF(0+,0,REF,3)

X = PLLOTF(1.,0,1,0,1)

X = PLOTF(0.,0,0,0,2)

X a2 PLOTF (=5,0,17.5,3)
CONTINUE

GO TO 9

END
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6. ANALYTIC ESTIMATOR SOLUTIONS

1 FORMAT (6F16.8)
2 FORMAT (1H1)

10

D 8 0031

PRINT 2

DO 10 N = 1,200

RHO = =1,01 + 0,01 * N

Z = EXPF(D * RHO/(1.0 = RHO))
Y = 2/(1,0 - RHQ)

RHO1 = LOGF(Y)/(D+LOGF(Y))

Z1 = 1,0 = RHOC1

Z2 = 71 + EXPF(D*RHC1/(1.0 = RKO1))

PRINT 1, RKO, Z, Y, RHO1, Z1,
END



7. FINITE DIFFERENCE SYSTEM WITH ESTIMATOX AND CONTKOL

UIMENSION ALPKRA(2).» X1(4), X2(4), «THl1(2,2),
1F(2,2)» KH2(2), KTH2(2,2), C2INV(2,2),
CX1FRR(2),%2ERR(Z), XRAR(4),H1(2), c2(2,2),

SHZF(2) ,HFTHF (22 2) ,HeFTYE(2),HTH1DX(2),VECTOR(2)sDELTX1(2)
4,X1TEMP(2),X1CIFF(2),FX1DIF(2), Y2(4)

1U FORMAT(1H1,26X,» 1BHTRANSIENT RESPONSE,30X,4HB1 =,F1445,5X,
19hHe =y F14.8)

11 PORMAT (1H )

12 FOKMAT (5X,4(3X,F16+8),27%X,13)

18 FOSMAT (F14.8)

14 FORMAT (1H0,3X»1HN»14X,1HUS17X,3HIN0,17X,1HZ,16X24KFLUXYZ)

15 FCRMAT (1H ,14,4(3X,F1648))

16 FURMAT (15,4F14,8)

17 FURMAT (15,F14.8)

18 FCRMAT (15)

19 FOURMAT (4F16.8)

Keal 18, M

REAU 13, T

FEALD 13, ALAMBU

KeAl 13, <0

heAl 19, b1, EZ2, A»C

20 kEaL 13, RFOO

FRINT 10, E1, Bg

FRINT "14

PRINT 14

EPSY = 1,0E=~6

N = 0

Pl =

FLUX
.2 0,0
UT =
UL = 1.0
YK =

D = ALAMBD
ALPPA(l) =
ALFRA(2) =
FRINT 15, © RGO, <40, FLUX

UELTAZ = Z0 - 1,0

DECTAK = FLUX =:1.0

PUNCH 16, N, L» KHOU, DELTAZ, NELTAN
KKCR = RKOOD

(K = 20
BELT = 0.1
Bit1d) = %,
h1(2) = 1.
HTNI(1,1)
hTH1(1,2)
HTA1(2,1)

0
= Z0/(1.0 = RKHLD)

1.0
0.0
s R

"nn oo

e
. e e
coo
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HTH1(2,2) = 1,0
21 DO 22 K = 1,10

IF (U) 25,24,25
24 7 = ZK % EXPF((ALAMED # RHOK * K # 0,1 * T)/(1.,0 = KHOK))

G0 10 26
25 L=ZK*EXPF((ALAMED/U)*LOGF((1,0=RHIK)/(1,0=RHOK=U*K#*0,1#T)

1)=ALAMBDw#Kw#Q,1%7)
26 KHU = RHOK + L*K#*n.1#T

FLUN = 2/(1.0=KKO)

N=N¢1

PRINT 15, N, RHQ, Z» FLUX

DELTAZ = Z - 1.0

DELTAN = FLUX - 1,0

PUNCH 16, N, Ls» RHO, DELTAZ, DELTAN
22 CUNTINUE

2=y

RHOKR = RHO

YK = FLUX

E & 1

X1(1) = ALFHA(1)
X1(2) = ALFHA(Z2)

IF (uU) 28,23,z28
28 EXPU = EXPF(D*Tex1(2)/(1.0 = X1(2)))
X2(1) = X1(1) * EXPC
Ve SRR GEED]
Gu TO 27
28 EXPL = EXPF((D/U)*LCGF((1,0-X1¢2))/(1,0=X1(2)=U*T))=DeT)
RAl1) = X1(1) * EXPC
XSZ = XA (D) + U =T
Gu TO 29
27 EAPU = EXPF(D*TwX1(e)/(1.0 = X1(2)))
XHAK(1) = X1(1) = EXPO
xgAar(2) = x1(g)
il = EXPO
F(1,2) = (DwT#2X1(1)/(1.0 = X1(2))#e2)«EXPD
GO TO 30
29 EXPU = EXPF((L/U)#LCGF((1,0-%1¢2))/(1,0=X1(2)=U*T))=DeT)
X8AK(1) = X1(1) = EXPC
XeAk(2) = X1(2) + U + 1

F(1,1) = EXPC

F(1,2) = DeT*X1(1)*EXPC/((1.0-X1(2))%(1,0=X1(2)"UeT))
da Fi2s1) = 0.0

Eil2xd) = 140

F2(1) LB/ 010 ="X2(2))

H2(e) = X2(1)/7(1.0 = X2(2))we2
PU-st 1 % 41,2
PO=STd = a2

$1 HTH2(1,J) = Hz(]) *» K2(J)
po-g2-1 = 1,2
h2F(I) = 0.0
DOEs2a <= 1,2

32 H2FCL) = H2F(I) + H2(J) » Flls1)
DO 83 1=1.,2
DO 83 J = 1,2



35 HFTHF(1,J) = H2F(1) = H2F(J)
DO $4 1 = 1,2
DO 34 J = 1,2
44 C2INV(IsJ) = HTH1C(IsJ) * HFTHF (I, J)
DENZ = C2INV(1,1)#CcINV(2,2) = C2INV(1,2)#C2INV(2,1)

C2(1,1) = C2INV(2,2)/DEN2
C2(1,2) = =C2INv(1,2)/DEN2
C2(2s1) = =C2INV(2,1)/DEN2
C2(2»2) = C2INV(1,1)/DEN?2
DO o5 1 = 1,2

89 X1ERR(I ALPHACI) = X1(1)

) =
HX1ERR = 0,0
Do 6 I = 1,2
34 HX1ERR = HX1ERR + H1(I) # X1ERR(I)
PI1 = HX1EKR##2
DO 37 1 = 1,2
37 X2EKR(I1) = XxX2(l) - XBAR(])
YH = X2(1)/ (1.0 = X2(2))
YERK1 = YK = YH
Pl2 = YERRL we2
HX2ERR = 0,0
bo 38 1 = 1,2
38 HX2ERR = HX2ERR + Hé(l) « X2ERR(I)
YERK = YERR1 + KWX2EHRR
DO 39, I = 1,2
39 H2FTYE(I) = HgF(1) * YERR
Do 40 1 = 1,2
40 HTH1DX(1) = H1(]) * HX1ERR
DO 41 1 = 1,2
41 VECTOR (1) = RZFTYE(I) * HTHIDX(I)
DO 42 1 = 1,2
UELTX1(I) = 0.0 :
Du 42 J = 1,2
42 DELTX1(1) = DELTX1(l) « c2(1,J) * VECTOR(J)
bo 43, I = 1,2
438 X1TEMP(I) = X1(])
DO 44, 1 = 1,2
RSRXT1) & X141} * DELIXitl)
IF(X1(2) = 0.8) 46,46,45
45 X1(1) = X1TEMP(Y1) + DELTX1(1) # (0,8 = UsT = X1TEMP(2))/
1DELTX1(2)
X1(2) = 0,8 = U » T
46 CONTINUE
BEAY, 1. ® 1,8
47 XADIFFC(I) = X1(]) = XITEMP(I])
Do 48 I = 1,2
FX1DIFC(I) = 0,0
U0 48 J = 1,2
48 FX1DIFCI) = FXIDIFCI) + F(l,J) » X4DIFF(J)
HO-89 1 =1,2
49 Xg(l) = XBAR(I) « FX1DIF(I)
ELas P11 + Pl2
IF (P1 = EPS1 ) 51.,51,50
S8 L.s L+ ¢
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51

56

B7

548

&n

(A
52

53
54
55
56

1P 29,27,29

THEESNE (1)/70 (140 = X2(2))

U = Bl « (X2(1) - 1.0) + B2 # X2(2)
PRENT 12, U5 X2(2), X2(1)» YHs L
PUNCH 17,N,U

RORS &SI "1,2

DO 56 J = 1,2

HTH1(1,J) = HTHZ2(1,v)

DOSRT o] &1, 2

ARRRACT) 5 X2 (1)

DN B ER T

HIGLY = H2(1)

BRI AN= X2 ])

IF (u) 61,60,61

EXPU = EXPF(DeTwX1(2) /(1,0 = x1(2)))
X2(1) = X1(1) * EXPC

RPLEN =1 (2)

GU TO

kSPL =6§XPF((E/L)tLCGF((1.U'X1(2))l(1.o-X1(2)-U'T))'DtY)
a2t = X1(1) * EXPC

K2ie = X1tz2) * U « 7

UT =Rl » (X2(1) = 1.0 » B2 % X2(2)
IFCUT = UL) 53,52,52

Ul = UL

6O TO 55

FECUT & UL) 54,55,5%

Ul = UL

[F (NeM) 21,56,59

CONTINUE

GUST0 2D

END



8. DIFFERENTIAL SYSTEM WITH ESTIMATOR AND CONTROL
COMMON U, H, EPS2
DIMENSION ALPKA(2), X1(4), X2(4), 4TH1(2,2),
1F(2,2)» H2(2), KTH2(2,2), C2INV(2,2),

2X1FKR(2),X2ERR(2),

XBAR(4),H1(2), c2(2,2),

3HZF(2) s HFTHF(2,2) ,HEFTYE(2),HTH1DX(2),VECTOR(2) s DELTX1(2)

4, x1TEMP(2i,X1L1IFF(2),FX1DIF(2),

Y2(4)

10 FORMAT(1H1,28X%,18HTRANSIENT RESPONSE,30X,4HBY =,F14.8,5X,

14rRZ =,

FORMAT
FORMAT
FURMAT
FARMAT
FORMAT
FURMAT
17 FORMAT
FURMAT
FURMAT
READ
READ
READ
READ
READ

20 KEAL

Fi.4,8)

(1H )

(5X,4(3X,F16:8),27%X213)

(F14.8)

(1H0,3Xs1HN» 14X, 1HUS17X, 3HRH0,17X,1HZ, 16X 4HFLUX/)
(1H ,14,4(3X,F16.8))

(15,4F14,8)

(15,F14.8)

£1%)

(4F16.8)

18, M
98y T
13,
13,
19
13,

PRINT 10,

ALAMED
in
B1,
RRO0
k1,

o, Asl

B2

PRINT 11

PRINT
ErFS1

lag
v
v
n
LU 1)

14 »

1.0€E-6
1.,0E=-4

Z0/¢1.0 = RHCOD)

ALAMBL
ALPRA(1)

ALPRA(2)
FrRINT 15, M

DelLTAZ
DeLTAN

PUNCH 16,

RHOK =
in =
DELT =
R1(1)
hl(e)

HTH1(1,1) =

20

» RKOO,
=20 - 1,0

® FLUX = 1.0
Ny, Lo RHOO.
RHOO

Z0, FLUX

DELTAZ, DELTAN

0'1
1.0
1.0
1.0
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21
24
25

26

22

29

30

31

32

33

34

HTH1(1,2) = 1,0
HTH1(2,1) = 1,0
HTH1(2,2) = 1,0

DO-22 K =.1,10

IF (u) 25,24,25

Z = ZK * EXPF((ALAMBED * RHOK # K & 0,1 * T)/(1,0 = RHOK))
GO TO 26

L=ZK*EXPF ((ALAMBD/U) #LOGF((1,0=RHIK)/(1,0=RHOK=U*K#0,1+T)

1)=ALAMBD*Kw0.1%*T)

RHO = RHOK + L*Kw#n.1#T

FLUX = Z/(1,0=KRKO)

N = N+1

PRINT 15,N,UsRHC,ZsFLUX

DELTAZ = Z = 1.0

DEETAN = "FLUX = 1.0

PUNCH 16, N, L» RHO, DELTAZ, DELTAN

CONTINUE

WRITE TYPE 11

LK = 7

RMOK = RHO

YK = FLUX

el &

X1(1) = ALPHA(1)

X1(g) = ALPHA(Z2)

X1(38) = 1.0

X1(4) = 0.0

CALL INTEGR (X1, X2)
X1(3) = 1.0

X1(4) = 0.0

CALL INTEGR (X1, XBAR)
F(1,1) = XBARL(3)
F(1,2) = XBAR(4)
F(2,1) = 0,0

Fl2:2) = 1,0

H2(1) 1.0/(1.0 = X2(2))

M2 I W= X201 )/580.n = X2(py)ned
Do 31 1 = 1,2

Do $1 = 1,2

HTHZ(1,J) = He(]) *» H2(J)
DONge [ ey, 2

HZF(I) = 0,0

PONGE diE L2

L=

H2F(1) = H2F(1) + He(Jd) + F(Jsl)
DO 33 1=1,2

DOSE J & 1.2

AFTHF(I,J) = F2F(]) » H2F(J)

LO 34 I = 1,2

bu 34 J = 1,2

C2INV(I,D) KTH1CIsJ) + HFTHF(I, J)
DENZ = C2INV(1,1)%CeINV(2,2) = C2INV(1,2)#C2INV(2,1)

C2(1,1) = C2INV(2,2)/DEN?2
C2(1,2) = =C2INV(1,2)/DEN2
C2(2s1) = =C2INV(2,1)/DEN2
C2(2,2) = C2INV(1,1)/DEN2



bo 85 1 = 1,2
$5 X1FRR(1) = ALPHAC(I) = X1(I)
HX1ERR = 0,0
D0 36 1 = 1,2
3n HX1ERR = HX1ERR + H1(I) « X1ERR(I)
P11 = HX1EKRw#*2
vo 37 1 = 1,2
47 X2EKR(I) = x2(1) = XBAR(])
YR = x2(1)/ (1.0 - X2(2))
YERK1 = YK = YH
Pi2 = YERR1 w#2
HX2eERR = 0,0
Vo 88 I = 1,2
339 HX2ERR = HX2ERK + He(l) » X2ERR(I)
YERK = YERR1 + WX2EKR
00 39, I = 1,2
39 HeFTYEC(I 2F¢1) * YERR
Ju 40 |
40 HTH1DY (I
DY 41 1

} &

= 1,

)
41 VECTOR (1)

)

)

H
2
= H1(]) * HX1ERR
18
= R2FTYE(I) * HTHIDX(I)
po 82" 1 ’
JELTX1 (]
vy 42 J
42 JeLTX1(] ELTX1(1) + g2(1,J) « VECTOR(J)
970 43, | = 1,2
43 ALTEMP(I) = X1(])
Oy 44, 1 = 1,2
44 X1([) = Xi(¢I) + DELTX1(I)
IF(X1(2) = 0.8) 46,46,4>
45 X1(1) = X1TEMF(1) + DELTX1(1) # (0,8 = UeT = X1TEMP(2))/
LUELTX1(2)
RLCRY = Q.8 = U o T
45 CUNTINUE
v 47, I =

IlPIIH

2
0.
2
)

»

47 XU0IFF(T) = X1(1) - X1TEMP(])
vl 48 [ = 1,2
FXLDIFELI) » 0,
30 %8 J = 1,2

43 PXADIFCI) = FXAIDIFCL) + F(l,J) = X4DIFF(J)
D0 49 I = 1,2
49 x2(1) = XBAR(I) + FX1DIF(I)
BisaRIl 'y P2
if tP] = EPSY ) 51.,51,50
gL s L +.1
wRITE TYPE 18, L
GJ TO 29
51 YH = X2(1)7 (2.0 = X2(2))
U = UT
PRINT 12, U, X2(2), X2(1), YW, L
PUNCH 17,N,U
U0 56 1 = 1,2
90 56 J = 1,2
56 HTH1(1,J) = HTH2(1,uv)
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DONE 78 1 ai o
57 ALPHA(I) = x2(1)

UONS B Secw 1), 2

HIC(I) = H2(])
H8VATCT). 2 X2(T1)

CALL INTEGR(X1» X2)
62 UT = B1 ¢ (X2(1) = 1.0) + B2 » X2(2)

IFCUT = UL) 53,52,52
52 UT = yL

G0 TO 55
53 IF(UT + UL) 54,55,55
54 UT = UL
55 IF (N=M) 21,59,59
59 GO T0" 2D

END

SUBROUTINE INTEGR (X1, Y2)

COMMON U, H, EPS2

DIMENSION Y0(4), Y1(4), Y2(4), FO(4), FL1(4), F2(4),
1ERROR(4), F(4)» Y(4), X1(4)
1 FURMAT (F14.3)

N = 4

S YT
&9 Lo =
MEOS = 1
38 HA 0 33333333*H
.130666667*%hk
«125#*H
s 2D "H
aD*H
13 1«5%H
"4 2. *H
HH = ,66666667*K
wilTr TYPE 1, H
da CAELSFCT S CY0s FO)
JJ 41 [=1.N
41 Y1(I) = YU(I) « HA « FO(D)
EALEREET 3¢ sE3)
JO 42 [s1,N
42 YLUI) = YQ(I) « HB*FO(l) + HBwF1(1)
GALCSECTSOY LS F2)
D0 44 [=1,N
44 Y1(I) = YO(I) + HE*FOC(I) = HF#F1(1) + HG*F2(1)
BALL FCT YL F1)
00 45 1=1,N
45 Y2(1) = YOC(I) + HB*FO(I) « HH*F2(1) + HBeF1(])
J0 34 I=1,N
ERROR(I) = ,2 * ABSF(Y1(l) = Y2(1))
I[F (EPS2= ERROR(I)) 35, 34, 34
34 CONTINUE
Lo 32 I1=1.N
F2YQGId -3 Ya(l)

==
c
LU LI LI [ U | I [



33
37
47
a9

31
24

35

99

LOC = LOC + 1

IF (LOC = MLOC) 37, 99, 99

IF (LOC # 1) 48, 47, 48

IF (MLOC = 2) 48, 45, 49

U0 31 [=1,N

I[F (EPS2= ERROR(I) *» 64,) 48, 48, 31
CONTINUE

H = HG

LUC s LOC 7 2
MLOC = MLOC /7 2
U0 TO 38

H = HE

MLOC s MLOC = 2
LOC = LOC » 2
GO To 38

RETURN

END

SUBROUTINE FCT (Y, F)

COMMON U

DIMENSION Y(4),» F(4)

FIT) B-0.31 * Y(1) » Y(2) /(1,0 = Y(2))
F(2) J

F(3) 0,31 » Y(3) = Y(2)/(1.0 = Y(2))

RETUR
END

z
Fa) = 0,31 «(Y(2)*Y(4)*Y(1)/(1.0=Y(2)))/(1.0°Y(2))
N
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